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Abstract 
We have designed a framework for the optimization of Automatic Target Recognition (ATR) 

algorithms. Successful ATR algorithms are complex, with non-linear components and feedback 

between components, and thus do not lend themselves to traditional analytical optimization 

methods. A prototype of the designed framework has been implemented with a visual programming 

interface that simultaneously aids design decisions and provides opportunities for improvements and 

optimizations. This framework is applicable to individual algorithms, groups of algorithms, and 

whole ATR suites. The framework can accommodate larger systems where the ATR algorithm is but 

one part; it is also possible to embed the framework into a larger system. 

We established concept feasibility in Phase I, which specified a design and implemented a 

prototype for the ATR optimization framework entirely in Java. The Phase I effort included a built- 

in ATR taxonomy to aid algorithm design and successfully demonstrated algorithm optimization. 

In Phase II we will enhance the ATR optimization framework in several ways: (1) Improve the 

basic operation of the framework to support feedback loops, a parameter editor, and the handling of 

image sets, (2) Extend the taxonomy and provide a taxonomy template editor to give the ATR 

designer freedom to construct new taxonomies, (3) Implement several choices for the optimization 

function, including Powell's method and Genetic Algorithms, (4) Demonstrate how to use existing 

C/C++ code and executables within the framework, and (5) Optimize two full ATR suites to validate 

the framework and to demonstrate code reuse. The result of the Phase II effort will be a fully 

implemented and tested ATR optimization framework. 
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1 Introduction 
Automatic target recognition (ATR) is the processing of information from one or more sensors 

in order to detect and recognize targets (Sherman et al., 1993; Bhanu & Jones, 1993 Bhanu, 1986). 

There have been numerous ATR applications based on various methods, including statistical pattern 

recognition, synthetic discriminant functions, model-based vision, neural-network-based 

classification, knowledge-based reasoning, and syntactic pattern recognition. In practice, these efforts 

have not been totally successful mainly due to non-repeatability of target signatures, competing 

clutter objects having similar features as valid targets, natural variability in outdoor scenarios 

(different terrain, vegetation, weather, etc.), target camouflage and obscuration, and limited use of a 

priori information (Jones, 1993; Roth, 1990). Traditional approaches—dating back to the early 

1960s—of signal processing, pattern recognition, knowledge based reasoning, and neural networks 

have not been able to provide a robust solution (i.e. maximal detection and minimal false alarms) 

when target signatures and backgrounds are allowed to vary in an unknown manner. 

Consequently, ATR research is an ongoing process in the Navy as well as other branches of the 

DoD and at many companies and universities. Given limited research budgets, new methods and 

algorithms often compete for funding opportunities. There thus exists a need to develop new 

methods and test environments to support rapid performance evaluation of developed algorithms, as 

well as to support design optimization and enhancement. 

1.1 Objectives 

The objectives of the work are to develop a framework that allows an ATR algorithm designer to 

optimize and compare arbitrary ATR algorithms. This Framework will: 

• Enable tuning and comparison of algorithms 

• Provide a graphical interface for easy manipulation of algorithms 

• Provide a flexible and easily extensible (plug-in) architecture 

• Provide a built-in hierarchy of relevant design choices for the specification of air-to-surface 

ATR algorithms 

• Encourage code re-use and sharing among algorithms 

1.2 Results 

We have designed a framework for the optimization of ATR algorithms. A prototype of the 

designed framework has been implemented with a visual programming interface that simultaneously 

aids design decisions and provides opportunities for improvements and optimizations. This 

framework is applicable to individual algorithms, groups of algorithms, and whole ATR suites. The 

framework will be able to accommodate larger systems where the ATR algorithm is but one part; it 
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will also be possible to embed the framework into a larger system. 

We established concept feasibility in Phase I, which specified a design and implemented a 

prototype for the ATR optimization framework entirely in Java. The Phase I effort included a built- 

in ATR taxonomy to aid algorithm design and successfully demonstrated algorithm optimization. 

The Phase I effort demonstrated feasibility of the concept with the optimization of a simple 

segmentation algorithm. An image was hand-segmented to label regions containing targets. An 

exhaustive search was used to find the optimal parameter values. For each set of values the 

segmentation was performed and the result compared to the hand-segmented target image. At the 

end the parameters were set to the optimal setting. 

The optimization was accurate and easy to use. Furthermore, using the Framework the 

optimization was performed in a methodical fashion that would not be feasible if the process were 

controlled manually. 

1.3 Outline 

This report will first discuss the design of the Framework in section 2, and then the actual 

implementation in section 3. The taxonomy of ATR algorithms that forms the foundation for the 

built-in hierarchy of ATR design objects is discussed in section 4. Section 5 presents the sample 

optimization problem by which we demonstrated the feasibility of our approach. Finally, section 6 

presents the conclusions of our work, along with recommendations for Phase II development and 

Phase III commercialization potential. 

Section 2 describes the design of the framework. In section 2.1 we discuss the requirements of 

the design, which are chosen to satisfy the objectives from the previous section. In section 2.2 a 

sketch for a possible user interface is presented. Finally, in section 2.3 the finer points of the design 

are discussed. 

Section 3 first reviews the benefits of object oriented programming and the benefits for this 

project. Section 3.1 discusses the Java language and environment and its benefits to this project. 

Section 3.2 describes the use of abstract interfaces in the Framework. The basic classes used in the 

Framework are discussed in section 3.3, and the overall class structure is presented in section 3.4. 

The visual interface is reviewed in section 3.5. Section 3.6 recapitulates the various ways in which the 

Framework is flexible and extensible. 

Section 4 presents the built-in taxonomy of ATR algorithms. Section 4.1 discusses preprocessing. 

Section 4.2 presents the detection of potential targets. Feature extraction is discussed in section 4.3. 

Classification is discussed in section 4.4. Finally, in section 4.5, future options regarding the ATR 
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taxonomy are mentioned. 

Section 5 discusses the demonstration of the prototype Framework. Section 5.1 presents the 

goals and structure of the demonstration. Section 5.2 presents the implementation of the 

demonstration. Section 5.3 makes explicit connections between the demonstration and the operation 

of the fully implemented prototype planned for Phase II. 

Section 6 first recapitulates the specific achievements of the Phase I effort in section 6.1. The 

conclusions of the work are stated in section 6.2. Section 6.3 presents the recommendations for 

Phase II, and section 6.4 discusses the potential post applications. 

Section 7 lists the references used in the text and is followed by an Appendix containing 

summaries of a variety of ATR algorithms. 



Charles River Analytics 
R96451 

2 Framework Design 
This section describes the design of the framework. In section 2.1 we discuss the requirements of 

the design, which are chosen to satisfy the objectives from the previous section. In section 2.2 a 

sketch for a possible user interface is presented. Finally, in section 2.3 the finer points of the design 

are discussed. 

2.1 Design Requirements 

The Framework for ATR algorithm optimization and tuning must be implemented with a visual 

programming interface that simultaneously aids design decisions and provides opportunities for 

improvements and optimizations. This framework will be applicable to individual algorithms, groups 

of algorithms, and whole ATR suites. The framework must be easily extensible and also encourage 

code re-use and sharing between algorithms. The framework must also be able to accommodate 

larger systems where the ATR algorithm is but one part; and it must also be possible to embed the 

framework into a larger system. 

The design requirements can be summarized by: 

Visual interface 

Built-in hierarchy 

Tuning and comparison 

Extensible architecture 

Encourage code re-use and sharing 

Embedding 

In order to clarify these requirements, they are discussed in the following paragraphs: 

The Framework must provide a visual interface for easy manipulation of algorithms. While there 

is no inherent requirement that ATR algorithms be manipulated using only visual programming 

tools — in fact, ATR algorithms are often written in traditional programming languages — it has 

been our experience that ATR algorithms are more easily manipulated using such tools. Our 

experience has been corroborated by others in the field, and visual programming tools such as 

Khoros are now available for general visual programming development. 

Given the flexibility of visual programming, it is therefore necessary that the Framework provides 

guidance in the form of a built-in hierarchy of relevant choices for designing domain specific 

algorithms, in our Phase I effort, covers the air-to-surface ATR problem. This means that the ATR 

algorithm designer is guided at each step in the process; when a design choice is made, it is made 

from a list of allowed choices. However, it must also be possible for the expert ATR algorithm 
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designer to go beyond those choices when necessary, as the Framework is not intended to embody all 

available ATR algorithm design knowledge (an impossible task). As an example, at a certain point in 

the segmentation part of an ATR algorithm an edge-finding method may need to be used. In this 

case, the designer will be presented with a choice of edge-finding methods, and can then choose one 

of those and adjust its parameters. 

The Framework should provide an intuitive interface for the tuning and comparison of ATR 

algorithms. This is the main purpose of the Framework, and it must be possible to compare different 

ATR algorithms on an equal footing. Furthermore, it must be possible to optimize any given 

algorithm using an appropriate optimization method. This also means that any combination of 

parameters can be optimized while the rest stay fixed. 

The Framework must necessarily provide flexible and easily extensible architecture (plug-ins), to 

deal with variety of ATR algorithms. Again, just as the Framework cannot possibly embody all the 

ATR algorithm knowledge of even one expert, it must also be capable of accommodating new ideas 

that are not part of the original design. Because this event is likely to arise, the architecture for 

incorporating such extensions must be both simple and generic. 

The Framework should encourage code re-use and sharing between algorithms. It should be 

designed in such a way that if new code is developed for a particular algorithm, it will immediately 

and publically become available to other algorithms that can use the same type of operation. As an 

example, if the designer creates a new edge-finding method in the course of designing one ATR 

algorithm, this method should be immediately be available anywhere an edge-finding method is 

required, even in another ATR algorithm suite. 

Finally, the Framework must also support the embedding of more complex systems that include 

ATR algorithms as sub-systems, as well as the use of the Framework within a larger system. This is 

necessary because ATR systems do not exist in isolation, but may need to be tuned in concert with 

other systems that make use of ATR output or systems that gather and manipulate the information 

used by the ATR algorithms. An example of such an application would be the case where the images 

fed into the ATR algorithm must go through a limited bandwidth channel. The imagery may be 

compressed and passed through a possibly lossy channel; how does this affect the performance of the 

ATR algorithm? To answer this, the ATR algorithm has to be re-optimized for the new situation. 

This problem can be dealt with in two different ways: either the whole system, including the image 

compression and lossy transmission modeling, is included in the Framework; or only the ATR 

algorithm is included in the Framework, but the Framework is accessed in a simple way, say via a 

command-line interface with file inputs and outputs, such that it can be incorporated into an 

arbitrary system. The choice will likely depend on the non-ATR components, and it is important 
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that the Framework be flexible enough to be used in the most natural manner. 

2.2 User Interface Sketch 

This section presents a sketch for an interface that satisfies the requirements stated above. This 

sketch focuses on the visible part of the Framework and the direct manipulation of the visual objects 

that are part of ATR algorithms. Other interface components, such as menus, buttons, etc., are 

intentionally ignored in order to focus on the desirable characteristics of the algorithm components. 

Bear in mind that the specific demarcation of functions at various levels in the following example is 

somewhat arbitrary; the actual implementation follows a demarcation based on the taxonomy of 

ATR algorithms discussed in Section 4 below. 

Figure 2.2-1: Top Level of the Interface 

Figure 2.2-1 shows the top level with both image data and truth data as inputs needed by the 

ATR system. The circles show connections for the ATR Multimeter™, filled-in circles being 

evaluation and optimization points. The open circles are the "ground" connection that must be used 

for optimization; these open circles allow a part of the system to be optimized. To explain the 

Image data 
K> Segmentation 

Truth data 

Classification *C Output 

Figure 2.2-2: One Step Down 
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meaning of these circles in a different way, the existence a circle shows that data is available and a 

filled-in circle indicates that a metric is also available, so that the output can be evaluated. 

Figure 2.2-2 shows the result of clicking on the "ATR System" in the previous Figure. Some of 

the internals of the ATR System now become visible, and more specific operations become possible. 

Further clicking on the "Classification" might reveal the diagram in Figure 2.2-3, where the internals 

of the classification sub-system becomes visible. The use of "clicking" on objects to reveal more 

information about them, and choosing objects to work with using visual manipulation are key 

elements of the proposed design. 

Segment 

Image data 

Truth data 

y> 
Feature 
Extraction 

Output 

Figure 2.2-3: Stepping into Classification 

2.3 Design Elements 

The design requirements in section 2.1 state that a visual interface for manipulating the ATR 

algorithms should be used. The interface sketch just discussed builds on this idea, which is derived 

from working with visual dataflow environments such as Khoros and Lab View. Those systems 

successfully use icons on a two dimensional sheet with the ability to more or less arbitrarily connect 

those icons. Those systems also control the execution order of the code represented by the icons so 

that code is executed only when valid data is available. One of the differences between Khoros and 

the present Framework is that the latter is designed with the hierarchical representation of algorithms 

as an integral feature of the system, whereas in Khoros the creation and manipulation of so-called 

"sub-worksheets" feels more like an afterthought, being awkward and buggy. 

The part of the interface that displays the system under consideration is a panel with a number of 

inter-connected blocks. Each block depicts a separate sub-system, and data paths are shown as 

connections between blocks. Blocks have one or more data inputs on the left side of the block, and 

one or more data outputs on the right side of the block. It is possible to select a series of blocks that 

should be optimized by clicking on jacks that sit on the data paths. For each sub-system, the popup 
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menu can be used to select an implementation method for that sub-system. If no popup menu is 

available, that means that only one implementation method is available. The block is also a button, 

so clicking on it will open up the panel, showing the internals of this sub-system. 

Image data 

-f\-    Segmentation 

Truth data 

Classification #L Output 

Figure 2.3-1: Hooking up the ATR Multimeter™ 

The visual interface used for manipulating ATR algorithms should be helpful both for guiding 

design decisions and making various tuning and optimization decisions. In particular, we plan to use 

an ATR Multimeter™ for measuring performance and evaluating the results of various 

optimizations. The ATR designer should be able to hook up the virtual leads of this multimeter to 

various points in the visual representation as shown in Figure 2.3-1, indicating where performance 

should be measured; optimizations are indicated in exactly the same way. Clearly, it should not be 

possible to measure performance at arbitrary points, as performance has to be defined and calculated. 

The possibility of measuring performance or performing optimization should be indicated visually, 

for example using a different color for the connection circle rather than the standard color (again, see 

Figure 2.3-1). However, functions to perform this evaluation can be added anywhere, usually with 

very little coding effort. These evaluation functions, whether built-in or plug-ins, are required to 

follow the same specification with well-defined inputs and an output in the range of 0-100%. 

The Framework should provide guidance to the ATR algorithm designer, beginner and expert 

alike. The Framework should enforce certain design choices that can only be circumvented 

deliberately. For example, the Framework should only allow preprocessing type operations within a 
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preprocessing block. (This can be circumvented by creating a new preprocessing operation that 

performs the required processing.) The restrictions on design choices include restriction on the types 

of operations as well as restrictions on the types and number of inputs to an operation. These should 

help make the ATR algorithm execute correctly without significant performance deficiencies. It 

should also be possible for the ATR algorithm designer to override any of these restrictions. 

Because the Framework cannot know all that a knowledgeable ATR designer knows, and because 

it is impossible to predict what types of algorithms may be developed in the future, it is important 

that the Framework is extensible in every possible way. Therefore it should be possible to provide 

new algorithms, new implementations of algorithms, new visual interfaces, even new optimization 

algorithms, should the need arise. 

The Framework should be able to perform optimization on complete and partial ATR 

algorithms. The optimization should use state of the art optimization methods that have been 

developed in the field of numerical computing. These techniques must be multi-dimensional and 

include Powell's method, Genetic Algorithms, the downhill simplex method, and simple exhaustive 

search. Each of these algorithms has its own benefits. The main issue for ATR optimization is that 

each "function" evaluation is very expensive and requires the processing of each step of the ATR 

algorithm up to the point where it is evaluated. The exhaustive search optimization method is easy to 

implement, but completely inefficient. The downhill simplex method and Powell's method are 

nicely described in Press et al (1986). In short, the downhill simplex method uses an amoebae-like 

crawl through the multi-dimensional space to find a minimum. Powell's method tries to find 

direction of steepest descent using successive function evaluations. The method called Genetic 

Algorithms uses a pool of parameter value combinations (called chromosomes). For each generation 

a new pool of chromosomes is created based on the fitness (evaluation) of previous chromosomes, as 

well as possible random mutations and cross-overs. The Genetic Algorithms approach, while slow, is 

a good method for avoiding local minima, the constant bane of traditional optimization algorithms. 

Table 2.3-1: Optimization Algorithms 

Drawback Algorithm 

Genetic Algorithms 

Powell's method 

Downhill simplex method 

Exhaustive search 

Conjugate gradient 

quasi-Newton (DFP, BFGS) 

Linear regression 

Marquardt-Levenberg 

Custom method 

Benefit 

Flexible, finds global max/min 

Efficient, builds up gradient info 

Simple to use 

Simple to use, simple to program 

Efficient 

Efficient, highly developed 

Efficient for linear models 

Efficient for nonlinear models 

Tuned to specific problem 

Very slow 

May not find global max/min 

Slow, may not find global max/min 

Slowest of them all 

Requires gradients, not used 

Requires gradients, not used 

Requires gradients, not used 

Requires gradients, not used 

Must be added 
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It should be possible to add new optimization algorithms to the Framework. While this is rarely 

going to be a desirable option, there may be cases where a specialized optimization algorithm can be 

constructed that is more efficient than any of the provided alternatives. Such an optimization 

algorithm can perhaps take advantage of private knowledge of the inner workings of an ATR suite. 

In the list of optimization algorithms above, traditional methods that use gradients have not been 

included. The reason for this is that gradients are not readily available, except by additional expensive 

function evaluations. Powell's method, a non-gradient method included above, does a good job of 

incorporating all previous functional evaluations in order to build up this kind of information. If 

someday an ATR algorithm needs to be optimized which can provide gradient information, one of 

the gradient-based optimization algorithms (conjugate gradient, quasi-Newton, linear regression, or 

Marquardt-Levenberg) can be implemented as a custom optimization algorithm and used for greater 

efficiency, but they are not included as gradient information is not readily available. 

Another special emphasis on ATR algorithm design is the Framework's ability to transparently 

handle sets of images. In Khoros for example, one input always corresponds to one image, and this 

creates a lot of extra work for the ATR algorithm designer when various loops have to be created to 

deal with sets of images. In the Framework, blocks will be able to automatically handle sets of images 

or other objects, which will also simplify the sometimes rather complex file management issues that 

accompany ATR algorithm design. Once the idea of image sets is introduced, the ATR designer can 

benefit even more by having available several different sets that can be called up by name. 

In addition to handling complex sets of data the Framework should also be aware of the 

distinction between data used for training, evaluation, and testing. When developing a classifier that 

learns from examples, training data is required for the classifier to learn. A set of testing data is used 

to evaluate the performance of the classifier. However, if it is necessary to tune the classifier by 

changing some parameters until optimal performance is reached, part of the training set or a separate 

evaluation set must be used. If the testing set is used for this purpose, it is no longer a good predictor 

of the classifier performance. Knowledge about these issues will be built into the Framework, so that 

the ATR algorithm designer has some help in managing these distinctions. 

The Framework should make full use of the object oriented features found in modern 

programming environments. The restrictions that are used to guide design choices can be coded into 

the inheritance hierarchy. This makes it easy to extend the system by creating derived classes or by 

implementing interfaces, an interface being a list of functions that an object can implement. The 

inheritance hierarchy can also be used to embody the taxonomy hierarchy, which is closely related to 

the design choice restrictions already mentioned. The Framework will also use a modular 

architecture, with separate modules for the optimization framework, GUI components, and the ATR 

10 
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taxonomy. New modules can be constructed for each new ATR algorithm that is implemented. 

When implementing a new ATR algorithm within the Framework, it should be clear that the 

implementation can be arbitrarily opaque or transparent. By this we mean that the ATR algorithm 

can be implemented at a high level, where none of the sub-systems are visible and manipulate; or 

the system can be implemented such that all sub-systems are visible with parameters and 

implementations that can be manipulated. A low-level, or transparent, implementation does of 

course involve more work, but there are benefits. With a transparent implementation, it is possible to 

take advantage of sub-system implementation methods that have been provided by other transparent 

implementations; this is not possible for opaque implementations because the sub-systems are not 

visible. It is also possible to control the optimization at a finer level, which can be an advantage when 

algorithms are large and complex. The greatest advantage is the ability to manipulate the algorithm 

directly to modify it in ways that merely adjusting parameters cannot achieve. 

In terms of a description for programmers familiar with object oriented languages, most of the 

work done by the ATR algorithm designer consists of composing, creating new objects by using 

existing objects and putting them together. The work that goes into extending the functionality is 

usually done by using the inheritance mechanism. 

Table 2.3-2: Design Elements and Approaches 

Design Element 

Algorithm editing 

Selection of sub-part of algorithm 

Algorithm evaluation 

Algorithm design 

Algorithm variability 

Unknown algorithms 

Algorithm optimization 
File handling, train/test/evaluate data distinction 

Complex taxonomy of algorithm components 

Approach 

Visual editing of a dataflow type representation 

Visual select beginning and end 

ATR Multimeter™ displays the information 

Guided by framework, provide lists of choices 

Built-in taxonomy accommodates wide range of 
algorithms 

Extensibility, add new objects 

Choose from optimization algorithms 

Automatic handling of sets of images 

Object oriented inheritance hierarchy 
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3 Framework Implementation 
This section first reviews the benefits of object oriented programming and the benefits for this 

project. Section 3.1 discusses the Java language and environment and its benefits to this project. 

Section 3.2 describes the use of abstract interfaces in the Framework. The basic classes used in the 

Framework are discussed in section 3.3, and the overall class structure is presented in section 3.4. 

The visual interface is reviewed in section 3.5. Section 3.6 recapitulates the various ways in which the 

Framework is flexible and extensible. 

Based on the requirements described in section 2, we determined that indeed it is preferable to 

use an object oriented environment. The object oriented facilities of data abstraction, inheritance, 

and polymorphism are all well suited for the ATR optimization framework. Data abstraction 

enforces modularity, so that code is split into independent modules with clearly defined methods 

used for communication between modules. The inheritance mechanism provides a way to inherit 

behaviors from other modules, reducing the amount of programming by promoting code reuse 

between modules. Polymorphism allows the inherited modules to have somewhat different behaviors 

than their parent modules. All in all, these features simplified the implementation of the Framework 

tremendously. 

In addition, for the implementation of the Framework we also required an environment where 

the details of a graphical user interface (GUI) are taken care of. Preferably, there should be a standard 

set of calls that would work on any platform. 

3.1 Java 

As a result of matching the design requirements with different implementation options, we chose 

to use the Java programming language and environment for the Phase I effort. There are a number of 

good arguments for using Java, including: 

•     Productivity; some companies report as much as a 10-fold gain over C++! This is because Java 
is less error prone than C++, as it has garbage collection, memory management, and a pure 
object oriented architecture 

Cross-platform portability, including a cross-platform GUI 

Testability; the pure object oriented architecture enforces modularity 

Straightforward multi-threaded model 

Robustness and security 
Upgradeability on the fly using the dynamic binding; useful for plug-ins and extensions 

Easy interface with legacy code, C/C++ Java Native Interface (JNI) 

Legacy executables easily wrapped in Java objects 

In particular, the memory management, object oriented nature and the cross platform GUI are 
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reasons why we decided to go with Java. These features are not available in C++ without non- 

standard libraries or other additions. Because Java is an interpreted language, there are some concerns 

about speed. However, Java interpreters are becoming better and better, using just-in-time 

compilation and other techniques to run Java programs very quickly. In addition, Java compilers that 

compile to machine code for specific processors are also becoming available. While such code would 

not be portable without recompilation, this is not a great concern for this application, as the 

application would probably remain on a single machine or set of machines for long periods of time. 

In any case, the bottlenecks will be in the code that performs the details of the ATR algorithms, such 

as the code in the image processing library. If this code is in C/C++ then it will already be fast, if it is 

in Java, then it can be compiled to native. 

As already mentioned, the use of Java does not preclude the use of legacy code in the 

implementation of ATR algorithms within the Framework. In fact, Java is perhaps already one of the 

most compatible environments. In particular, the ATR Framework will be able to use existing code 

in the form of: 

• Java code, trivially compatible 
• Existing libraries, for example DLLs; accessed using the Java Native Interface (JNI) 

• Existing C/C++ code; also accessed using the JNI 
.     Executables, these will be wrapped in Java objects and executed. Communication of inputs and 

outputs will be through files. It is not recommended to use any interactive executables. 

• Ada and Cobol now have compilers that compile to Java byte-code. 

3.2 Interface Declarations 

In order to isolate the actual workings of framework modules from the various messages that they 

can send to each other the implementation uses Java interfaces. Java provides the ability to specify 

interfaces, which only declare methods without providing definitions for them, much like pure 

virtual functions in C++. The interfaces can then be implemented by other objects by providing 

definitions for those methods. Java has introspective abilities that allows the Framework to figure out 

at run-time whether a given object implements one or more of these interfaces. 

We have used interfaces to achieve the desired functionality. The interfaces used in the 

Framework are: 
• Optimizing — The main interface, which contains methods to deal with parameters, execute 

functions, interact with the Framework, and of course, lets objects be optimized. 

• Evaluating — Used to mark modules that can be measured. These are also the modules that 
can be at the end of a chain of modules to be optimized. 

• SetOperable — Implemented by modules that can operate on sets of data. 

Listing 3-1 shows the Optimizing interface, which is the only interface that is required of 
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public interface Optimizing 

1 
/** The part of the interface that establishes how to deal with parameters 

*/ 

public abstract int getParameterCount(); 

public abstract String getParameterName(int index); 
public abstract Object getParameterType(int index); 
public abstract Object getParameterValue(int index); 

public abstract Object[] getParameterRange(int index); 
public abstract Object [] getValidParameterRange(mt index); 

public abstract void setParameterValue(int index, Object value); 

public abstract boolean isValidParameterSet(); 
public abstract int[] getlnvalidParameters(); 

'***  The part of the interface that is used to actually execute functions 

*/ 

public abstract Object[] execute(Object[] inputs); 

public abstract int getlnputCount(); 
public abstract int getOutputCount(); 

public abstract int        getRequiredInputCount(); 

These methods need to be implemented in order to fit in the framework 
/** 
* 

*/ 

public void setFramework(Framework theFramework); 
public boolean showParameters(); 
public void rebuild«); 

public void setSystemName(String theName); 
public String getSystemName(); 

public void addlnput(String label); 
public void addOutput(String label); 

*  Methods required for Optimization algortihms 
* 

■*/ 

public double- maximizeFunction(doublet] param); 
public void setOptimizationSetSize(int numParams); 
public void mapOptimizationParameter(int opt, int sys); 

Listing 3-1: The Optimizing Interface 
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modules. As can be seen, there are four main parts to this interface. The first section declares all the 

methods needed to access the parameters of the module. Both the parameter editor and the 

optimization algorithm need to use these methods when communicating with the module. The 

second set of methods are used to actually execute the code of the module. These methods are used 

by the Framework as well as by the optimization algorithm. The third set of methods are needed to 

work inside the Framework, and only the Framework makes use of them. The last set of methods are 

used only for the actual optimization step. 

Because the components that make up the Framework also have a visual representation, they 

must derive from the j ava. awt. Panel class. The methods in this class are used to display the 

component and to provide the event handling for the component. The Panel class already 

implements the basic functionality required, simplifying the development of new components. 

Section 3.3 below describes a default implementation of a component called Optimizer that 

derives from Panel class and implements the Optimizing interface. This component is used 

frequently within the Framework. The easiest way to add a component with new functionality is to 

create a class that derives from Optimizer and overrides the necessary methods. 

The use of interfaces makes the Framework modular and very easily extensible. For example, to 

provide a new module with functionality that is very different from what is available from the 

Optimizer class, one can create a new class that derives from Panel (or derives from a class that 

derives from Panel) and implements the Optimizing interface. The methods that implement the 

interface can be completely different from the implementation in Optimizer, and thus allows for 

complete flexibility. It is possible to imagine a component that does not follow the design of the rest 

of the Framework, but that still provides a visual interface as well as a programmatic interface to be 

used by the Framework. 

public interface Evaluating 

{ 
/ ** 
*  The interface for marking components that can be evaluated 

*/■': 

public abstract double evaluate(Object   []   outputs,   Object  truth); 

} 

Listing 3-2: The Evaluating Interface 

The interface shown in Listing 3-2 is used to mark components that can be evaluated. This 

means that the component has a method called "evaluate" which compares the output of the 

component with some truth data. The actual implementation of this method depends on the nature 
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of the output produced by the component. This is another way in which the Framework is 

extensible, by providing customizable evaluation methods. Thus it is possible to provide new 

components and perform optimization on those components using custom evaluation methods; 

these operations can therefore work on data types that were never considered by the designers of the 

Framework. 

public  interface SetOperable 
{ 

'*    The part of  the interface that  is used to actually execute  functions 
*/ 

public  abstract Hashtable[]   setExecute(Hashtable[]   inputs); 
} 

Listing 3-3: The SetOperable Interface 

Similarly, the SetOperable interface shown in Listing 3-3 is used to mark components which 

operate directly on the whole set of data. In this case, the "setExecute" method is used instead of 

calling the "execute" on each piece of data. This can result in simpler procedures and more efficient 

processing of large data sets. Again, it is an optional interface that can be implemented for reasons of 

efficiency and convenience. 

3.3 Basic Classes 

This section describes those classes which are fundamental to the implementation of the 

Framework. While the total number of classes that support the implementations is much greater 

(over 50 classes in addition to Java core classes), these classes provide the essential functionality that 

makes the Framework a successful demonstration of the technology as well as an implementation 

that will serve as a starting point for the Phase II work. The functionality of the following classes is 

described: Framework, Optimizer, ChoiceButton, Block, ATRLayout2, OptimizedSystem, 

SetOptimizer, and ExhaustiveSearch. 

Framework. This is the main class of the Framework. It can be used either as an applet or an 

application. The Framework provides services as well as an environment for the display and 

manipulation of ATR algorithms. Among other things, this environment takes care of the dynamic 

loading of classes, and other file operations. 

Optimizer. This class implements all the basic functionality that is required of a system level 

description. The Optimizer class derives from Panel and extends Optimizing, thus it knows how to 

draw its contents properly. It also contains all the methods needed to deal with parameters, how to 
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get/set them, find the ranges and names of them, and also to deal with parameters of sub-systems. It 

is a complete class that can easily be extended to provide real functionality. 

ChoiceButton. This class implements a new visual interface element that is a combination of a 

button and a popup menu. In essence, it allows the user to choose, using the popup menu, the 

action that will accompany a click on the button. The class is used mostly to choose the particular 

algorithm to implement a certain functionality within the framework, such as choosing a particular 

neural network architecture to implement the classifier. Another example of where this class is used is 

for choosing the optimization algorithm to use. The designer uses the menu to pick the type of 

algorithm to use for optimization; and clicking on the button then performs the optimization using 

the chosen algorithm. 

Block. The Block class is actually derived from the ChoiceButton class and implements the sub- 

system visual interface component described above. When the contents of a system are explored, the 

result will often be a number of simpler sub-systems hooked up as to perform a certain function. The 

major additions to the ChoiceButton class includes methods for dealing with the number of inputs 

and outputs, and where those connections should go on the graphical representation. 

ATRLayout2. This class is used by the Optimizer class to draw the view of the system with its 

components. This LayoutManager currently handles all types of feedforward systems, with multiple 

parallel paths, including the joining and splitting of paths. 

SetOptimizer. This class extends Optimizer class and implements SetOperable interface. It is a 

class which can easily be used to provide set handling functionality. One great advantage of this 

structure is that if a class is derived from SetOptimizer, it does not need to provide a definition for 

"executeSetO", as that is already done by SetOptimizer. It suffices to provide a definition for 

"executeO" which only takes a single n-tuple of inputs. The executeSet() method of SetOptimizer 

will call executeO as appropriate. 

OptimizedSystem. This class extends SetOptimizer and is intended to be the class from which 

all top level classes are derived. Thus it is also how top level systems are recognized. The Framework 

will look for classes derived from OptimizedSystem and list those in the top level ChoiceButton. 

Note that while all top level ATR systems should derive from this class, it is also possible to have 

other systems that do not perform ATR but that could benefit from similar types of optimization 

derive from this class and be included in the top level menu. 

ExhaustiveSearch. The ExhaustiveSearch class is an implementation of an algorithm to actually 

perform the optimization by evaluating different combinations of values for the variables that can be 

changed. It is an example of how the optimization algorithm makes use of the facilities provided by 
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the framework. Despite being inefficient, this class can be used in real ATR design situations if only 

a small number of parameters are to be changed, or alternatively if the number of possible values for 

each parameter is small. This is the one class in this list of key classes that will be supplanted in the 

Phase II effort. While this exhaustive search optimization algorithm will still be available, the ATR 

designer is more likely to use one of the more efficient and versatile algorithms that will be included 

in the Phase II effort. 

3.4 Class Structure 

There is a class structure implied in the previous section. Figure 3.4-1 below shows all classes 

deriving from the Optimizer class. The classes in the figure include the classes that are essential to the 

framework operation (class names starting with cra.atro.* in the Figure) as well as other classes that 

implement the built-in hierarchy that aids ATR design decisions (class names starting with 

cra.atr.hierarchy.* in the Figure). 

i— cra.TopLevel ) 

-\ cra.atr.hierarchy.Preproce330peration }-a 

cra.atr.hierarchy.Cleaning 

cra.atr.hierarchy. Noise Removal 

— cra.atr.hierarchy.Sharpening 

— cra.atr.hierarchy.Normalization 

- cra.atr.hierarchy.Preproce33or j-g 

cra.atr.hierarchy.Do-UDperation 

— c ra .at r. hi e ra re h y. Do-2 JD pe ratio n 

era .atr. hierarchy. Do_5.j0peration 

cra.atr.hierarchy.Do-4JQpe ration 

— c ra .at r. hi e ra re h y, Detecto r  -B 

i— cra.atr.hierarchy.Wholelmage 

cra.atr.hierarchy.ROI Detector 

IHUMUAI.U1I..UJJJI-A 
— cra.atr.hierarchy. I mage20bject 

—\ cra.atr.hierarchy. Feature Extractor | 

- cra.atr.hierarchy.FeatureCreator 

— cra.atr.hierarchy.FeatureSelector 

era .atr.hierarchy.ROISegmenter 

cra.atr.hierarchg.Segmenter 

— cra.atr.hierarchy.Classifier IHT
1 cra.atr. hierarchy. FuzzyART MAP 

era .atr. hierarchy. BackPropagation 

— cra.atro.Displayimage 

cra.atr.hierarchy.ATR 

— cra.atro.SetOptimizer -e- cra.atro.OptimizedSystem 
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-Q- era .at 
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Figure 3.4-1: Class Optimizer and Derived Classes 
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The structure shown in Figure 3.4-1 also demonstrates the great benefit of the inheritance 

feature of object oriented programming. By defining one object (Optimizer) that performs the basic 

functions needed for a certain type of module; it is easy to create a multitude of different modules 

with slightly different behaviors. Each of the derived classes shown in the figure has only minimal 

additions to the base class (Optimizer), yet has markedly different behavior. Furthermore, it is 

possible to create new modules with still different behaviors without changing any of the code in the 

already existing modules, just as the derived classes in the figure did not require any changes to the 

base class. 

3.5 Visual Interface 

The visual interface for the design uses familiar GUI components such as buttons and popup 

menus. Figure 3.5-1 below shows the visual interface of the Phase I framework prototype. The 

components of the interface have the following functions: 

Back Return to the previous panel. This button brings the designer back up one level. It is 

intended to work very much like its namesake button in a web browser. 

Rescan — This button should only be used when new code is added to the Framework while it 

is running. This button causes a scan of all the code available to the project, and makes it available in 

the appropriate menus. This function is run automatically when the Framework is started. This 

functionality is possible because of the dynamic binding used in the Java environment. 

Run This button is used to execute the system. It will execute all processes from left to right 

with the data being passed from each output to the next input. 

Parameters — Click on this button to see all the parameters of the currently visible portion of 

the ATR system. When chosen at the top level, this will display all the parameters in the ATR 

system. The parameter editor allows the parameters to be set to any value within the allowed range. 

Measure — Use this button to evaluate the system at the point selected by hooking up the ATR 

Multimeter™ to an appropriate red jack (red jacks indicate that an evaluation function is available). 

The ATR Multimeter™ will display the result of the evaluation, always on a scale from 0 to 100. A 

consistent scale is used so that the designer does not have to learn a new measuring system for each 

evaluation function. 

Optimize — Use the popup menu to choose an optimization algorithm, then click on the 

button to perform the optimization. As different combinations of values of the parameters are tried, 

the ATR Multimeter™ will display the result of evaluating the current set. Currently only the 

exhaustive search optimization routine is available. 
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Figure 3.5-1: The Framework Interface 

The designer can of course use the popup menus of sub-systems to change their implementation, 

and then click on the sub-system to examine and possibly modify its internal functionality. Clicking 

on the Input or Truth buttons brings up editors that allow the designer to select images to be part of 

the current image set. 

3.6 Flexibility and Extensibility 

As a means of summarizing the design of the Framework for ATR optimization, it is perhaps 

simplest to list the means in which this system is flexible and can be extended to suit the 

sophisticated ATR algorithm designer. The designer can choose implementations (if there is more 

than one option), and parameters can be adjusted to account for any particular requirements. 

However, true extensibility requires that the system can be used in designs that were not included in 

the original specification. Specifically, the ways in which this Framework can be extended are: 

• Extending functionality by sub-classing existing classes and adding new code 

• Adding evaluation functions where desired for optimization fine-control 

• Adding new templates to the built-in taxonomy structure 

• New visual interfaces that still work within the Framework 

• Adding new optimization algorithms 
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Most of this extensibility comes from using an object oriented design approach. Furthermore, 

the simplicity and straightforwardness with which such extensions can be added is a tribute to the 

Java language and environment. The dynamic nature of the language also makes it possible to add 

such extensions "on the fly", that is, while the framework is already running. Thus rather than 

performing some lengthy saving and restoring operations that a restart of the Framework would 

require in some circumstances, new code can be added and incorporated quickly and efficiently. 
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4 ATR Taxonomy 

This section presents the built-in taxonomy of ATR algorithms. Section 4.1 discusses 

preprocessing. Section 4.2 presents the detection of potential targets. Feature extraction is discussed 

in section 4.3. Classification is discussed in section 4.4. Finally, in section 4.5, future options 

regarding the ATR taxonomy are mentioned. 

A taxonomy of ATR algorithms was constructed. The goal was to clarify the relationships 

between different ATR algorithms, enabling us to identify functional blocks that stay consistent 

across different ATR suites. The taxonomy was then hierarchically built up by applying the same 

process recursively to each functional block. Our approach included the following steps: 

• Conducting a literature review to collect a list of algorithm suites for the task of air-to-ground 
ATR. The summary of a number of algorithms can be found in Appnedix A. 

• Identifying the different ways used in those suites to partition the overall ATR task. 

• Identifying partitions that provide interfaces between functional blocks with consistent 
meaning across different suites. (Such as the partition between segmentation and. feature 
extraction, which always specifies an interface that passes isolated regions of interest (ROIs) or 
"objects" from segmentation to feature extraction.) 

• For each partition, identifying all standard algorithms capable of providing the functionality 
required for each block. (I.e., for an "edge-detector" block, identifying standard approaches to 
edge-detection.) 

We fully realize that any such taxonomy will be colored by our biases derived from greater 

exposure to some ATR methods than others. The literature survey was a conscious effort on our part 

to reduce any such biases, but it is unrealistic to expect the resulting taxonomy to be fully objective 

and give equal weight to all styles of ATR. One solution is to think of our taxonomy as a template 

that represents one or more styles of ATR. The framework can have multiple such templates, with 

the other templates representing ATR styles preferred by other researchers. 

The end result of our taxonomy construction was a hierarchy that has four branches coming out 

of the root node. Figure 4-1 below shows a specific instance of our framework using one block from 

each of the four branches: Preprocessing, Potential Target Detection, Feature Extraction, and 

Classification. Top-level ATR block diagrams with the same or similar blocks in the same order are 

common in the literature (Rogers et al., 1995; Bhanu, 1986). 

Figure 4-1: Top level of ATR algorithm taxonomy 
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We consider the first two blocks optional and the latter two required since we identified ATR 

suites without preprocessing or potential target detection, but no algorithms without some form of 

feature extraction or classification (according to our definition of those terms). Most real-world ATR 

suites, however, contain all four blocks and the following four sections of this report describe each 

block. The hierarchical nature of the taxonomy is represented in the outline of the following sections 

comprising the remainder of this chapter: 

4.1 Preprocessing 
4.2 Detecting Potential Targets 

4.2.1 Point-of-Interest (POI) Detection 
■'-':':'.■ 4.2.1.1 Local Contrast Analysis 

.4.2.1.2 Shape Matching 

4.2.2 /Segmentation 
;\ 4.2.2.1 Boundary Detection 

4.2.2.2 Region Detection 
4.2.3 POI Detection Followed By Segmentation 

4.2.4 No Operation 

4.3 Feature Extraction 
4.3.1 Gray-Level Features 

4.3.2 Shape Descriptors 
4.4 Classification 

4.4.1 Model Based Classification 
4.4.2 Feature Based Classification 

4.4.2.1 Supervised Classification 
4.4.2.2 Unsupervised Classification 

4.1 Preprocessing 

The first functional block of an ATR system—the preprocessor—%cts its input directly from the 

sensor subsystem. In most cases this is a single image stream, but for radar sensors such as SAR or 

LADAR and for multi-sensor assemblies there can be multiple streams representing fundamentally 

different scene measurements: reflected light, emitted heat, or range. The first two are energy 

measurements that can be made at different frequencies and may hence constitute more than one 

stream each. Hence, we assume that the preprocessing block's input data consists of one or more 

image streams. We define an image stream as a continuous sequence of image maps where: 

• pixels are arranged on a grid which tiles the sensor's whole field-of-view (FOV) 

• each pixel's value represents a measurement from the corresponding local region in the FOV 

The measurements in each image can be noisy, biased, saturated, obliterated by sensor artifacts, 

etc. The pixel grid can be nonuniform, skewed, or dynamically distorted, and crosstalk effects 

between pixels are common. There can also be co-registration problems between image streams, 

irregular sampling intervals, and dynamic changes due to mechanical vibrations & drift. 
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The primary goal of preprocessing is to remove those problems. Some of the more common 

image operations towards this goal are: 

• Artifact/drop-out removal 

• Noise removal 

• Brightness/Contrast normalization 

• Sharpening/de-blurring 

A secondary goal is to enhance the image in a way that helps separate objects from background. 

In general, the image shows zero or more targets, localized clutter that may look like potential 

targets, background that surrounds targets and clutter, and superimposed noise. The objective of 

image enhancement is to increase target-to-background contrast, without making the clutter look 

more target-like. 

Other forms of preprocessing are common for radar sensors that produce range maps and for 

multisensor assemblies, such as: 

• Image registration 

• Resampling/resolution conversion 

• Coordinate conversion (such as spherical to Cartesian) 

• 3-D data re-projection (such as creating a virtual top-down view) 

Given the large number of possible operations and the lack of prescribed order (the exact order 

of preprocessing operations is not always important), we chose to implement this block as a sequence 

of operations without any restriction on the number or order of operations. Figure 4.1-1 below 

shows an example of a preprocessing block instantiation in our framework with two operations: noise 

removal followed by sharpening. The input and output datatypes for this particular instantiation are 

identical since neither operation changes image dimensions or resolution. This is not always the case, 

but we assume the output always consists of one or more image streams as defined above. Finally, 

although unusual, the possibility of ATR suites without any preprocessing exists (for example with 

highly advanced sensor assemblies). This option is included in our framework by specifying zero 

operations for the preprocessing block, in which case it simply passes the input image streams 

unchanged to the output. 
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Truth! 

Operation 1 

NoiseRemovallS H> 
Operation 2 

Sharpening 
k> Detector! 

Figure 4.1-1: Preprocessing block with two operations 

4.2 Detecting Potential Targets 

The next top-level functional block can be identified by the need for resource allocation. The 3rd 

and 4th top-level functional blocks in ATR systems, the feature extractor and classifier, are often so 

computationally expensive that it is not feasible to apply them everywhere in the FOV. Hence, the 

potential target detector \s applied first to identify the image regions most likely to contain targets: the 

regions-of-interest (ROI). For a large FOV sensor and relatively uncluttered scenes, the combined 

area of all ROI can be orders of magnitude smaller than the total FOV area. 

Another reason for potential target detection is to limit the false alarm rate, which may become 

unacceptably high if the system looks for targets everywhere in the FOV. By limiting the number of 

locations at which feature extraction and classification is applied, the total number of classification 

decisions is also restricted and hence the upper bound on false alarms is lowered. 

We identified four mutually exclusive subblocks for the potential target detection block, as 

shown in Figure 4.2-1 below. These subblocks represent four possible operations or combinations of 

operations: point-of-interest (POI) detection, segmentation, POI detection followed by 

segmentation, and no operation. The following four sections describe each subblock. The output of 

this block—regardless of the subblock choice—is a set of ROIs for each input image, where each 

ROI is assumed to contain one potential target. 
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Figure 4.2-1: Subblocks inside potential target detection block 

4.2.1 Point-of-lnterest Detection 

Since the main purpose of an potential target detection block is resource allocation, some ATR 

designers have found a source of inspiration in nature's solution to the same resource allocation 

problem: foveal vision. The visual systems of all higher vertebrate animals have much higher acuity 

in the center of the FOV—the fovea—than in the periphery, but the visual angle subtended by the 

fovea is only a few percent of the eye's total FOV. Thus the resource allocation issue: where in the 

FOV to apply this spatially restricted resource. The ultimate solution is to point the fovea at the 

locations where targets are most likely to be. The real problem is in estimating target probabilities for 

each location, i.e. to build a probability map for the FOV. Given such a map, the fovea should be 

centered on the highest peak. 

Thus, the conceptual goal of POI detection is to compute such a target probability map and 

locate the highest peaks. We came across many algorithms fitting this goal in our literature review. 

Two-dimensional localization is most common, but given enough ranging information (such as from 

SAR, LADAR, or optic flow computations) 3-D localization is also possible. We identified two 

fundamentally different types of POI detection: those based on local contrast analysis and those based 

on shape matching. As indicated in Figure 4.2-2 below, we chose to present those two types of POI 

detection as individual subblocks and as one combination inside the POI detection block. The three 

options are explained in the following three sections. 
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Figure 4.2-2: Subblocks inside the point of 'interest detection block 

If POI detection is the only operation in the potential target detection block, then one final 

operation is needed to turn the POI into a ROI: a region centered on the POI needs to be identified. 

This can simply be a fixed size square (box for 3-D) or circle (sphere for 3-D), or its size can be 

scaled according to projected target size if range information is available. 

4.2.1.1 Local Contrast Analysis 

Local contrast can be used to eliminate regions from consideration. A large image region (larger 

than a target) with all pixels of the same value (after correcting for low-level random noise) cannot be 

an ROI; it probably belongs to the sky, smooth ground, water surface, etc. Conversely, compact 

regions of high contrast can be valuable target indicators. For example, in infrared imagery, the 

temperature difference between a hot tank and its immediate background often shows up as localized 

high contrast, indicating a POI (Sherman et al., 1993). Local contrast is also computed in many 

radar based detection systems by adaptive threshold Constant False Alarm Rate (CFAR) processors, 

which report a POI when a range cell's temporally-averaged signal exceeds the surrounding range 

cells' signal by fixed amount (Koch, Moya, Hostetler & Fogler, 1995). 

4.2.1.2 Shape Matching 

Approximate matching of target's overall shape can be performed many different ways. One 

example, the VARTAC system (Hecht-Nielsen & Zhou, 1995) describes a Gabor jet approach where 

a set of Gabor kernels of eight orientations and four spatial scales are applied at each grid point. 

These Gabor jet measurements are compared to precomputed Gabor jets for geometric shapes that 

roughly resemble targets. Grid points where similarity is high are designated POI's. 

Target-part matching uses template-based pattern matching methods to search for target parts 
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that have easily identifiable shapes, such as gun barrels or treads (Sherman et al., 1993). Some 

specific algorithms include normalized correlation, symmetric phase-only matched filtering, and the 

generalized Hough transform (Ritter & Wilson, 1996). The last two come in many variations, some of 

which are rotation and scale invariant 

4.2.1.1 Local Contrast Analysis Followed By Shape Matching 

Since pattern matching algorithms are fairly computationally expensive, a more efficient 

approach is to use local contrast analysis first. At the very least, local contrast analysis can be used to 

eliminate uniform regions from the shape matching algorithm. Applying shape matching after local 

contrast analysis also has the potential to decrease false alarm rate. This is because the template based 

shape matching is more selective than the "data driven" contrast analysis. 

4.2.2 Segmentation 

Potential target segmentation attempts to maximize the difference between foreground and 

background, in effect generating a target outline or silhouette. The shape of the target outline is 

often an important feature for target recognition and the target silhouette can be used to mask out 

everything but the target for further processing. Of course, this same outline also defines a ROI, 

hence enabling the potential target detection block to contain only a segmentation operation. 

Target models used for segmentation can be subtle and implicit, such as assuming connectivity 

of an object's edges, the existence of an inside and an outside of a two-dimensional figure, etc. The 

models can also be quite explicit, wherein a dictionary of target silhouettes is maintained, and 

optimally manipulated (i.e., scaled, translated, rotated) and selected to provide the best match to the 

imaged object. Thus, a variety of segmentation techniques have been brought to bear on the 

problem, each with their own underlying assumptions regarding the 2-D or 3-D image attributes of 

the object, and each with their own algorithms for target image segmentation. 

A few attempts have been made to construct a taxonomy of segmentation techniques (Rosenfeld, 

1984; Lindley, 1991; Kasturi & Jain, 1991). A distinction used by Kasturi & Jain, 1991 to classify 

techniques is to discriminate between edge based methods and region based methods. The former 

type is conceptually based on finding dissimilarities in some property of the image, while the latter 

■ type indicates a search for similarities. This distinction has roots in one of the fundamental questions 

of vision: Do you first find the boundary between regions or first distinguish the regions to localize 

the boundary? Using edge-based methods implicitly argues for finding the boundaries first while 

region based methods go by the assumption that you find the region first. The former school of 

thought has extensive following in machine vision and AI under the term "edge detection". The 

latter school of thought has following both in machine and human vision research, typically under 
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the term "textural grouping". As indicated in Figure 4.2-3 below, we consider boundary vs. region 

detection to be subblocks inside the segmentation block. They are not mutually exclusive, although 

most systems tend to use just one or the other. 

Preprocessing 

t     __i 
Boundary 
Detection 

Region 
Detection 

f 
Feature Extraction 

Figure 4.2-3: Subblocks inside segmentation block 

4.2.2.1 Boundary Detection 

The basic definition of the problem which any edge or boundary based method tries to solve is 

given by (Kasturi & Jain, 1991) as marking the pixels that lie on the boundaries of an object. The 

definition of a boundary in these terms is that the neighborhoods on either side of the boundary 

must have some dissimilar characteristics. Boundaries are therefore functions of at least two variables: 

neighborhood size, and the metric by which to measure the characteristics of the neighborhoods. 

Boundary detection algorithms are often modular, consisting of three operations in sequence: 

1. Edge detection 

2. Boundary completion or gap closing 

3. Labeling of closed boundaries 

Edge detection algorithms use a great variety of approaches to measure local gradients of pixel 

values. Some are based on first partial derivatives, such as the Sobel operator (Sobel, 1970), while 

others are based on second partial derivatives, such as the Laplacian. 

The output of such edge detection algorithms for a typical target is not a closed boundary but 

many edge-pieces with gaps between them. That is why a boundary completion or gap closing 

algorithm is also needed. Such algorithms include the Boundary Contour System (Grossberg, 

Mingolla & Williamson, 1995), the CORT-X 2 filter (Bradski & Grossberg, 1995), a multiscale 

Gabor approach (Manjunath & Chellappa, 1993), and the Grouping Field approach (Heitger & von 

der Heydt, 1993). 

Finally, separate closed boundaries should be individually labeled ("object 1", "object 2", etc.). 

That is easily accomplished using a boundary follower algorithm. Note that this step may not be 
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needed if the overall boundary detection algorithm is only applied around one POL 

4.2.2.2 Region Detection 

Kasturi & Jain, 1991 define a region as a "set of connected points that belong to the same 

object." Forming regions is complementary to detecting edges in the sense that it is based on a metric 

which compares some characteristics of different image points for similarity, rather then dissimilarity 

as in edge detection. Unlike edge detection, region detection needs no concept of neighborhood. 

Marking every pixel in the image as either belonging to a region or not is sufficient. This is not to say 

that the concept of neighborhood can not be incorporated into the region forming process, only that 

unlike edge detection techniques, it is not required. 

Region detection algorithms are often modular, consisting of three operations in sequence: 

1. Thresholding 

2. Region growing 

3. Region labeling 

Thresholding is a very simple operation, but automatically choosing the pixel value at which to 

threshold is nontrivial. Some common methods are based on histogram analysis (threshold between 

peaks in the histogram) or on edge pixel analyses (threshold at the average value of pixels located on 

object edges) (Sherman et al., 1993). 

Region growing can be based on simple morphological operations (dilation and/or erosion) to 

remove small holes, gaps, and very small isolated regions. It can also refer to more complex iterative 

algorithms that attempt to grow and merge subregions until the rate of change drops, indicating an 

"optimum segmentation" (Sherman et al., 1993). 

As in boundary detection, a final step is needed to label separate regions. This can by 

accomplished using any region-filling or blob-coloring algorithm (Ballard & Brown, 1982). 

4.2.3 POI Detection Followed By Segmentation 

If an ideal object detection algorithm provides the coordinates of a point msife the object (often 

near the object's center), then an ideal object segmentation algorithm provides the object's outline. 

Many segmentation algorithms are computationally expensive and can only be used efficiently 

when getting a hint about where to look for the potential target boundary or region. Therefore, ATR 

designers often pair up a POI detection algorithm with a segmentation algorithm, such that the 

segmentation algorithm is only applied in the spatial vicinity of a POI. 
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4.2.4 No Operation 

The final option for this functional block is to ignore it and pass the (possibly preprocessed) 

input image stream directly to the next top-level functional block. In practice, this is only feasible 

with narrow FOV sensors that have already been cued by a separate target search system such that a 

large part of the FOV contains a potential target. For example, a dedicated target search system 

might use a wide FOV passive sensor to determine POIs and then scan each POI with a narrow 

FOV laser-radar sensor for a high resolution range map of the potential target. In that case it is 

acceptable to treat the whole FOV as a single ROI for further processing. 

4.3 Feature Extraction 

Feature extraction computes a vector of features, or "signatures," from the ROI specified by the 

potential target detector. The underlying assumption here is that if the feature vectors are statistically 

separable into distinct categories in the feature space, then the objects will be separable in the object 

space; i.e., they will be classifiable. Thus, the power of the features to provide adequate target 

distinguishability is critical, no matter what classification scheme is chosen. The key issue here is in 

the selection of features to extract, since there is a huge variety of feature types that can easily be 

computed as a function of the ROI. Note that this selection is sometimes linked to the choice of 

classification method in the next top-level functional block, some classifiers are optimized for data 

types that are only provided by specific feature types. 

We subdivided the feature extraction block into two subblocks based on the basic feature types: 

value features and shape features. The subblocks are not mutually exclusive (but they require different 

input data), they should rather be thought of as complementary sources of signature information. 

Potential Target Detection 

♦        __t 
Value 

Features 
Shape 

Features 

—r~ 
Classification 

Figure 4.3-1: Subblocks inside the feature extraction block 

The feature extraction block marks the end of image processing in the ATR processing chain. 

Output data from the feature extraction block consists of vectors or abstract structures, not images. 
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4.3.1 Value Features 

For ROI images that contain more than two possible values, many features can be computed as a 

function of the distribution of these values. In particular the 1st order statistics are frequently used, 

these are listed in Table 4.3-1 below. 

Table 4.3-1: 1st Order Statistics 

1st Order Statistics 

Mean 

Median 

Variance/Standard Deviation 

Min/Max 

Skewness 

Kurtosis 

Histogram 

Entropy 

Much more information is contained in features that are functions of both the values and spatial 

relationships between ROI pixels. Such features include those listed in Table 4.3-2 below. 

Table 4.3-2: Features Encoding Pixel Values and Spatial Relationships 

Complex Features Examples 

2nd Order (Dipole) Statistics Gray Level Co-occurrence Matrices 

Moments Central 

Normalized 

Standard 

Invariant 

Transform Signatures Gabor 

Wavelet 

Hough 

Karhunen-Loeve 

Discrete Cosine 

Fast Fourier 

Walsh 

Hadamard 

Mellin 

Fractal Dimension 

Symmetry  , . 

Detailed descriptions for many of those features can be found in Gonzalez & Woods, 1992, 

Ritter & Wilson, 1996, and in manuals for rapid algorithm development environments such as 
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Khoros and MATLAB. Symmetry as a feature of high information content is described in Reisfeld, 

Wolfson &Yeshurun, 1995. 

4.3.2 Shape Features 

For ROI images that contain just two values (pure black & white, or binary images), a number 

of features can be computed to describe the spatial relationships and shapes of connected regions. 

Note that all of those features can also be computed for grayscale ROI images if they are thresholded 

first, hence thresholding is common in the segmentation block to produce both grayscale and binary 

versions of the ROI. Table 4.3-3 shows a partial list of region descriptor features applicable to ATR. 

Table 4.3-3: Region Descriptor Features for ATR 

Region Descriptors 

Area 

Compactness 

Principal Axis 

Skeleton (Medial Axis Transform) 

Best Fitting Ellipse/Rectangle 

Topology 

Attributes 

Size 

Length-to-Width Ratio 

Orientation 

Quadtree 

Euler Number 

Adjacency Relations 

Inclusion Relations 

Another way to look at the ROI output from a segmentation block is to consider the only the 

shape of the ROI boundary and not the content. Table 4.3-4 shows a partial list of boundary descriptor 

features applicable to ATR. 

Table 4.3-4: Boundary Descriptor Features for ATR 

Boundary Descriptors 

Perimeter 

Fourier Descriptors 

Chain Code 

Shape Number 

Attributes 

Length 

Curvature 

Fractal Dimension 

Descriptions for implementing those features can be found in Ritter & Wilson, 1996 and 

Gonzalez & Woods, 1992. 
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4.4 Classification 

Target classification is the function of the final top-level block. The goal is to label the detected 

potential targets based on their associated set of feature parameters. Different ATR tasks have 

different levels of discrimination and hence different sets of labels to choose from. At a minimum, 

potential targets must be classified into "target" or "clutter" categories, but generally a higher level of 

discrimination is expected. Typical discrimination requirements are "tank" vs. "truck," or "T-72 

tank" vs. "BMP-2 tank". 

A variety of classification schemes have been implemented and evaluated in past ATR efforts, 

including classical linear and quadratic classifiers, cluster analyses, synthetic discriminant functions, 

and knowledge-based discriminators, to name a few. Each provides distinct advantages in different 

situations, but each is beset with particular problems because of underlying implicit assumptions in 

their scope of applicability. This variety has led to many taxonomies and comparisons for 

classification methods in general (Duda & Hart, 1973; Bishop, 1995; Schürmann, 1996), and for 

ATR in particular (Sherman et al., 1993; ATRWG, 1991; Bhanu, 1986). 

We chose to construct the simple taxonomy of classification methods shown in Figure 4.4-1 

below: modelbascd vs. feature based methods. This choice is not based solely on intrinsic differences 

between the methods. After all, model based methods use features too and feature based methods 

must contain some form of target representation. Our choice is based on a difference in emphasis and 

on a long-standing "cultural' difference in the field of target recognition. The former refers to the 

emphasis on detailed off-line target modeling and iterative on-line performance in model based 

methods, as opposed to the emphasis on optimized off-line training and one-step on-line 

performance in feature based methods. The latter refers to the top-down methodology preferred by 

designers of model based systems vs. the bottom-up approach preferred by designers of feature based 

systems. 

Feature Extraction 
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Model Based 
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Feature Based 
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T 
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Figure 4.4-1: Subblocks inside the classification block 
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4.4.1 Model Based Classification 

The model based approach to ATR classification is characterized by a reasoning process 

involving hypothesis generation and testing. Figure 4.4-2 below shows a sample diagram of the 

subblocks inside the model based block. All the blocks but for model based reasoning are required for 

a typical model based classifier. That one optional block constitutes an "outer loop" which iterates 

over the hypothesis generation-and-test cycle, but with higher levels of model fidelity on each 

iteration. 

Off-line Model 
Construction 

Model Based 
Reasoning H 

I 
1 Feature 

Extraction 

Model 
Database 

Evidence 
Accumulation 

Labeled Targets 
Feature 
Matching 

Figure 4.4-2: Subblocks inside the model based classification block 

The key issue for the off-line model construction and model database blocks is the type of 

representation that the ATR designer uses. There are six main categories, shown in Table 4.4-1. 

Table 4.4-1: ATR Model Representation Types 

Representation 

Statistical 

Syntactic 

Relational 

Geometry 

Physics 

Behavioral 

The task of hypothesis generation algorithms is to predict what features should be found a given 

ROI image, based on the accumulated evidence about target identity and pose. Once a hypothesis 

35 



R96451 
Charles River Analytics 

has been generated, the appropriate set of features is pulled from the model database by ±e feature 

selection block. For ATR systems that recognize many targets in any pose, the feature space can be 

huge. Feature selection must therefore use very efficient indexing techniques, such as geometric 

hashing. 

The selected feature can then be matched against the features actually extracted from the ROI 

image in the previous top-level block. This matching is usually a straightforward root-mean-square 

error or correlation measure per feature, performed by the feature matching block. That measure is 

forwarded to the evidence accumulation block, which uses one of the methods listed in Table 4.4-2 to 

handle uncertain data. 

Table 4.4-2: Methods for Handling Uncertain Data 

Method 

Kaiman filter 

Bayes net 

Dempster-Schafer 

Fuzzy logic 

Rule based 

Closing the loop, the accumulated evidence is forwarded to the hypothesis generation block, 

where it either confirms or rejects the current hypothesis (Sherman et al, 1993; ATRWG, 1991). 

4.4.2 Feature Based Classification 

The feature based approach to ATR classification compares a precompiled multi-dimensional 

decision space of all known targets to the feature vector that was extracted from the ROI image. 

Figure 4.4-3 below shows the two primary options: the use of supervised or unsupervised classifiers. 

Supervised classifiers are trained off-line with sample images of targets (in multiple poses) where each 

target is identified by its correct label. The purpose of the training is to establish a mapping between 

regions in the input feature space and target labels. Unsupervised classifiers are also trained off-line 

with sample images of targets, but rather then enforcing a mapping, the classifier identifies inherently 

robust clusters in the input feature space. A postprocessing block, category interpretation, then 

analyses each cluster to identify the appropriate label (target type or clutter). 
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Figure 4.4-3: Subblocks inside the feature based classification block 

The set of tasks needed for off-line training depends the data source as shown in Table 4.4-3. 

Table 4.4-3: Off-line Data Sources and Training Steps 

Data Source 

Acquire database 

Synthesize from target/clutter models 

Capture Using sensor 

Steps 

1. Partition into training/evaluation/testing data 

1. Generate data representing backgrounds 

2. Generate target/clutter data representing different types/poses 

3. Combine target/clutter data with background data 

4. Record truth data 

5. Partition into training/evaluation/testing data  

1. Choose locations 

2. Capture data with targets in multiple poses 

3. Record truth data 
4. Partition into training/evaluation/testing data 

4.4.2.1 Supervised Classification 

There is a huge variety of established methods for supervised classification. Two large groups are 

statistical and neural network classifiers, but there is a number of other methods. Table 4.4-4 lists a 

number of well-known examples of these methods. 
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Table 4.4-4: Supervised Classification Methods 

Group 

Statistical 

Neural network 

Other 

Methods 

Expectation maximization 

Maximum likelihood 

Bayes optimal       

Radial Basis Functions 

ARTMAP 

Backpropagation 

Boltzmann machine 

K-nearest neighbors 

Case based reasoning 

Decision trees 

Genetic programming 

4.4.2.2 Unsupervised Classification 

There is also great variety of unsupervised classification methods, also known as clustering 

algorithms, shown in Table 4.4-5. 

Table 4.4-5: Unsupervised Classification Methods 

Group 

Optimizing prototypes 

Neighbor distance 

Methods 

K-means 

Isodata 

ART 

Learning vector quantization 

Nearest neighbors 

Furthest neighbors 

Mutual neighbors 

Density estimate 

Graph theory 

The postprocessing algorithms used by the category interpretation block to label each cluster are 

typically either based on rule based inferencing or a learned mapping. 
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4.5 Future Options 

A potentially useful task would be identifying the "perfect performance" mode for each block. 

For example, thermal segmentation should isolate scene regions fitting a specific thermal signature, 

while range segmentation should isolate scene regions that stick out of the ground. A model for a 

block can be constructed if its perfect performance mode is known. This is valuable information for 

optimization of a multi-block chain: the model can replace the block during optimization to measure 

how much the other blocks in the chain contribute to the overall error. 
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5 Demonstration of Prototype Operation 

This section discusses the demonstration of the prototype Framework. Section 5.1 presents the 

goals and structure of the demonstration. Section 5.2 presents the implementation of the 

demonstration. Section 5.3 makes explicit connections between the demonstration and the operation 

of the fully implemented prototype planned for Phase II. 

In order to demonstrate that the limited Framework prototype developed during the Phase I 

effort can actually perform optimization and tuning of ATR algorithms, we have developed a test 

demonstration. A simple ATR segmentation algorithm is used. An evaluation method that compares 

the result of segmentation with truth data is also provided, with the truth data in this case being a 

hand-segmentation of the input data. 

5.1 Sample Demonstration of Optimization 

The various elements that need to be specified for ATR optimization are: 

• ATR algorithm 

• Parameters to optimize 

• Evaluation function 

• Search algorithm 

• Criteria for optimization 

As stated above, the ATR algorithm used in this demonstration is exceedingly simple. It 

performs segmentation by a global binary threshold. Values in the image that are above the threshold 

go to zero (background), and values that are below the threshold value are set to one (foreground). 

Mttft£J: 
x. -iw'cF'bK .•••JäH« 
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Measure 1 

Optimize 

Exhaustive- 

Figure 5.1-1: The ATR Multimeter™ 

The only parameter to optimize in the above algorithm is the threshold value. Optimizing only 

one parameter keeps the demonstration simple and manageable. 
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The evaluation function is used to compare the output of the segmentation to the truth data. In 

this sample demonstration, the output of the evaluation function (and shown on the ATR 

Multimeter™ as in Figure 5.1-1) is proportional to the number of pixels that are identical in the 

"truth" image and the segmented image. This is a rather simplistic evaluation of segmentation 

performance, and more sophisticated evaluation functions will be provided in the Phase II effort. 

The search algorithm used was a exhaustive search. In order to cover the parameter space 

effectively, the search algorithm tries a fixed number (in this case 100) values between the allowed 

minimum'and maximum values for each parameter. The exhaustive search actually evaluates every 

combination of allowable parameter values for those parameters that are to be optimized. Since 

exhaustive search optimization is very inefficient, we deliberately chose a problem with only one 

parameter. Optimizing k parameters using this method is O(n>0 in time, which leads to drastically 

longer search times as more parameters are optimized. 

Shoa» Input: egrm076.ir.GiF 

Figure 5.1-2: Input, Output, and Truth Images 
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The criteria used for the optimization in the current demonstration is the hand-segmented 

version of the input data. The hand-segmentation is rough, but accuracy is not required in order to 

demonstrate that the optimization works. 

Figure 5.1-2 above shows the input and output images of this optimization. The input image is 

shown at the top; it is the infrared reflectance image of a laser radar sensor. The type of sensor used is 

irrelevant to the optimization Framework, but may be very relevant to parts of the ATR algorithm 

used. A rough hand-segmented mask is shown at the bottom. This image is used by the evaluation as 

a "truth" image. The middle image shown in the figure is the optimal output of the simple 

segmentation, as generated by the Framework. The image demonstrates the importance of 

optimization. Even this simple segmentation algorithm can be coaxed to produce an image with 

some coverage of each target and very little false alarm coverage. Bear in mind that this thresholding 

output can easily be cleaned up with morphological operations. 

5.2 Sample Implementation 

The implementation of the demonstration shown above is straightforward. The code required to 

implement the thresholding segmentation is shown in Listing 5.2-1, and the code required to display 

the thresholding as a sub-system and to perform the evaluation of the segmentation output is shown 

in Listing 5.2-2. As can be seen, the code is fairly simple and is really only glue code that interfaces 

between the Framework and the image processing routines. 

public  class Threshold extends Optimizer 

public void definitionO 

addParameterDouble("threshold",   100,   0,   255); 

} 

public Object[]   execute(Objectf]   input) 

Object[]   output  = new Object[l]; 

int  threshold =   ((Number)   getParameterValue(0)).intValue(); 

outDUttO]   =  era.ip.Histogram.threshold((era.ip.Image)   input[0], 
°     P     l threshold,   255,   0,   255); 

return output; 
} 

} 

Listing 5.2-1: Code for the Threshold Component 

The DoSegment class shown in Listing 5.2-2 can derive from (extend) the ROIDetect class 
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directly. For this demonstration, it is included in another class which derives from ROIDetect; just 

as the Threshold class is included in the DoSegment class in the listing. 

public class DoSegment extends Optimizer implements Evaluating 

public void definition!-) 

addSubSystem("Threshold", "Threshold"); 

} 

public double evaluate(Object [] outputs, Object truth) 

{   imaae difference = Histogram.subtract((era.ip.Image) outputs[0], 
(cra.ip.Image) truth); 

int count = Histogram.nonzero(difference);        . ,,, 
".I;iit. size = difference.getWidthO * difference.getHeightO ; 

return l.O: - count :/ (double) size; 

}-   ..■ 

Listing 5.2-2: Code Demonstrating Use of Threshold and Evaluation Function 

The image processing routines that are used in this demonstration were developed for this 

demonstration, the operations that are performed are not very complex. For the Phase II effort, the 

plan is to use a commercially available image processing library. All the same, we anticipate that the 

glue code used will look substantially similar to the code shown in the listings. 

5.3 Comparison with Planned Phase II Operation 

It is interesting to compare the elements of this demonstration with the planned features of the 

Phase II functional prototype: 

The ATR algorithm will be chosen and customized by the user with the help of the visual 

programming interface. The customization will be completely flexible, yet it will be guided by the 

Framework's built-in taxonomy of ATR operations. The expert user will be able to override any 

built-in restrictions after being warned of any inconsistencies that may be introduced. 

The parameters to optimize will be chosen by using the GUI to select the parameters that can 

and/or should be optimized. This can be just one parameter, it can be all parameters that are part of 

the ATR system, or it can be any arbitrary set of those parameters. 

The user will probably choose to optimize the whole ATR system, in which case the evaluation 

function that will be used will be the one provided with the Framework to evaluate the output of an 

ATR system. More specifically, it will evaluate the resulting confusion matrix. 
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The search algorithm used will also be chosen by the user, and will most likely not be the 

exhaustive search. It is more likely that the user will choose a more efficient algorithm such as 

Powell's method, genetic algorithms, or the downhill simplex method. 

The criteria to use for optimization will again be truth data that must be supplied. The data will 

correspond to the stage at which the algorithm is evaluated for optimization, most likely this will be 

at the end-stage, where targeting information output by the algorithm will be compared to the 

previously determined desired targeting output. 

44 



„„„e, Charles River Analytics 
R96451 

6 Conclusions & Recommendations 
This section first recapitulates the specific achievements of the Phase I effort in section 6.1. The 

conclusions of the work are stated in section 6.2. Section 6.3 presents the recommendations for 

Phase II, and section 6.4 discusses the potential post applications. 

6.1 Summary of Phase I Effort 

The Phase I effort completed the following tasks: 

• A thorough literature review of a variety of ATR algorithms 

• Construction of a taxonomy of ATR algorithms 

• Specification of the requirements for a framework for ATR optimization 

• A design for a Framework for ATR optimization 

• A prototype implementation of the ATR optimization Framework 

• Development of a code base to be used in a Phase II effort 

• A demonstration of the prototype implementation 

In particular, the prototype implementation dealt with some of the more difficult issues, such as: 

how to create an easily extensible framework; how to structure a taxonomy of ATR algorithms; 

image set handling; dynamic loading of new code; how to use arbitrary optimization routines. Given 

that these problems were tackled in the Phase I effort, the Phase II effort can build directly on the 

existing Framework and extend it. In particular, new optimization algorithms can easily be added by 

following the example algorithm used in the demonstration. 

6.2 Phase I Conclusions 

We feel that the Phase I effort was successful in achieving its stated objectives, given that we were 

able to develop a working prototype Framework which demonstrates how ATR algorithms can be 

optimized. The current prototype may be of limited functionality, but it is not a "mock-up," it is the 

start of a codebase which we expect to continue building on in Phase II. We conclude that: 

• The implemented Framework provides a straight-forward interface, for working with ATR 

algorithms. The Framework leverages the knowledge of the expert ATR algorithm designer, 

while fully using the power of the computer for optimization purposes. 

• The included ATR hierarchy provides structure for implementing algorithms. This hierarchy 

was developed based on both practical experience and a literature review. 
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• Knowledge for working with ATR algorithms is embedded into the Framework. This 

knowledge includes presenting relevant choices for implementations, the handling of input 

data sets, and other ATR specific issues. As a consequence, the novice ATR algorithm designer 

will also find the Framework to be a comfortable learning environment. 

6.3 Phase II Recommendations 

Given the success of the Phase I effort, we recommend a Phase II effort that builds directly on 

the work done during the Phase I effort. The Phase II work should also develop it further to create 

an ATR optimization framework that can be used with little or no modification to perform 

optimization on real ATR algorithms. The objectives of the Phase II effort will be: 

• Define functional requirements 

• Extend Phase I framework prototype 

• Enhance framework with new capabilities 

• Acquire an image processing library 
• Implement several optimization algorithms, including GA, Powell's method, and the downhill 

simplex method 
• Validate framework by implementing and optimizing two ATR suites 

• Implement performance logging and analysis 

• Develop a commercialization plan for the technology 

Table 6.3-1 below compares proposed Phase II effort with completed Phase I work. It clearly 

shows how the proposed Phase II effort both builds on and expands the work done in Phase I. 
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Table 6.3-1: Comparison of the Phase I Effort and the Proposed Phase II Effort 

Feature Phase 1   r:!::' Phase II 

Objective Feasibility analysis Develop a full-scale working 
prototype which can be 
commercialized with minimal 
additional effort 

Focus Implement a basic framework for 
ATR algorithm optimization 

Enhance and validate a framework 
for ATR algorithm optimization 

Commercialization Identify potential uses of technology Work with a suitable machine vision 
vendor to develop requirements for a 
marketable prototype 

Find other markets for product 

Application Implement and demonstrate a simple 
segmentation task 

Implement and optimize two full ATR 
suites 

Resulting product Prototype Java classes ATR Optimization Framework 

Software platform Java on Mac Java on Unix, Windows NT etc. 

Interface with existing C/C++ code 

Use of existing technology Java GUI features Java GUI features 

Third party image processing library 

Validation Validate approach only Validate using the two implemented 
and optimized ATR suites 

Demonstration Demonstration of basic GUI and 
optimization functionality 

Demonstration of the full functionality 
of the Framework 

Delivery Final Report ATR Optimization Framework 

Programmers Guide 

Users Guide & Final Report 

6.4 Phase III Commercialization 

The Framework for optimizing ATR algorithms can most directly be applied to the optimization 

of machine vision systems. As a result we are pursuing contacts with machine vision systems 

suppliers and integrators. 

This Framework has potentially broad usefulness within the DoD. The finished Framework 

could be used to handle the ATR needs of the Navy, Army, and the Air Force. There may also be 

applications for joint commands such as the Ballistic Missile Defense Organization (BMDO). There 

might also be a need for some specialized frameworks to match particular applications, such as 

undersea sonar-based target recognition for the Navy. 

The optimization Framework is a general enough idea that it is not limited to ATR or other 

image based algorithms; we believe that it could be useful in the optimization of any complex 

system. As a result, we also plan to develop this tool also as a companion to the Company's shipping 

Learn Sesame personalization toolkit that is currently being marketed to corporate websites. 
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Appendix A: Literature Review of Candidate ATR Systems 

We have included in this appendix brief summaries of nine of the many ATR algorithms that 

were examined in order to develop the taxonomy in section 4. These algorithm are quite varied and 

represent a broad sampling of ATR algorithms. The summaries include a brief description, some 

observations, and diagrams that explain how workings of the algorithm. The algorithms included are 

the following: 

ATR 1: "Automatic Target Recognition via the Simulation of Infrared Scenes" by Aaron D. 

Lantermann, Michael I. Miller, Donald L. Snyder 

ATR 2: "Employing Contextual Information in Computer Vision" by Thomas M. Strat 

ATR 3: "Vertex Space Analysis For Model-Based Target Recognition" by Azriel Rosenfeld and 

Gary Whitten 

ATR 4: "Model-Based Automatic Target Recognition System for the UGV/RSTA Ladar" by 

Jacques G. Verly, Dan E. Dudgeon, and Richard T. Lacoss 

ATR 5: "Recognition of 3-D objects from multiple 2-D views by a self-organizing neural 

architecture" by Gary Bradski and Stephen Grossberg 

ATR 6: "Multiresolution approaches for automatic target detection" by Bjorn Jawerth and 

Leonard Mygatt 

ATR 7: "Target Recognition Using Multiple Sensors" by Y.T. Zhou and R. Hect-Nielsen 

ATR 8: "A Multifeature Decision Space Approach to Radar Target Identification" by J. G. Teti 

Jr., R. P. Gorman, and W. A. Berger 

ATR 9: "Multi-Target Discrimination with Linear Signal Decomposition/Direction of Arrival 

Based ATR" by Barry K. Hill, David Cyganski, and Richard F. Vaz 
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ATR 1: "Automatic Target Recognition via the Simulation of Infrared Scenes" 

Authors: Aaron D. Lantermana Michael I. Miller, Donald L. Snyder 

Group: Electronic Systems and Signals Research Laboratory, Department of 

Electrical Engineering Washington University 

Field use: airborne detection of land based units 

Sensor type: forward mounted FUR sensors, though the model can be 

broadened to LAD AR as well. 

Description: 

Unlike many traditional approaches to the ATR problem, the developers of this particular 

algorithmic suite chose to exploit the paradigm of direct hypothesis matching via the generation of 

synthetic scenes. Traditionally, ATR algorithms attempt to locate and identify targets through direct 

analysis of the image scene. Potential targets are first denoted and isolated, then identified and 

characterized. The novel approach used in this suite, though, determines to identify targets by 

"imagining" the scene: "pattern recognition = pattern synthesis". 

Scenes are engendered from an arrangement of target vehicles via simulated rendering. The 

rendering incorporates target configurations and emissive characteristics as well as image distortions 

estimated from sensor statistics. These synthetic scenes are then compared to actual image data by a 

likelihood function. From the combination of this likelihood along with a prior distribution 

spanning the set of possible scenes, a posterior distribution arises. The inference engine samples from 

this posterior to search the sample space for the best matching hypothesis. 

Due to the discrete nature of target groupings in terms of number and type and the continuous 

nature of their positions and formations, the inference engine combines "jumps": quantized state 

transitions between model subspaces and "diffusions" probabilistic searches of those subspaces, to 

generate hypotheses. Jumps are defined by three types of discrete transitions:, births what new targets 

are introduced, deaths where old targets are considered erroneous and expurgated, and metamorphs 

where a target is transformed to a different type. Amidst the jumps, which occur at distributed 

intervals as determined by a jump intensity function, diffusion processes, corresponding to the 

discrete target grouping subspaces, samples from the posterior distribution according to a gradient 

ascent. Together, the two processes constructs hypotheses towards a higher probabilistic match with 

the actual image data. 
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Observations: 

This is a rather different approach to the ATR problem. However, one thing to note is that there 

were a rather large set of simplifying assumptions made. Aberrations due to atmospheric effects, 

occlusions introduced by background and foreground clutter, positional variations arising from 

terrain formations, etc. have all been removed from initial consideration. Without these very 

common components of a real battlefield environment, it's premature to say that the experiments 

conducted demonstrate concept viability. Much of this is due to the fact that the sample space 

explored by the algorithm are probably orders of magnitude smaller than a realistic sample space. 

I.e., various non-planar geometric conditions, which infuse an further degree of complexity once 

vehicles can be oriented off a flat surface, and clutter that can seriously obfuscate target signatures 

and render matching almost untenable if the entire sample space must be searched to find the "best" 

hypothesis. However the idea is an interesting one, that has found root in some hypothesis 

generators for Model-Based classifiers. 

input: 
FLIR imagery 

Hypothesis Generator/Matcher 

PRISM Scene 
generator 

Jump diffusion 

hypothesis 

Figure A-l: Schematic of the Hypothesis generating ATR Method 
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ATR 2: "Employing Contextual Information in Computer Vision" 

Author: Thomas M. Strat 

Group: Artificial Intelligence Center, SRI International 

Field use: One of the systems employed identified objects in nature imagery, 
analyzing the arboreal scenes to extract and identify trees and other flora 
or fauna. The primary purpose of the other system was to detect buildings 
and other man-made structures, not necessarily military in nature or origin. 

Sensor type: not specified, perhaps CCD, at least for the nature recognition 

system 

Description: 

Contextual information is indispensable to the proper functioning of ATR systems. Any 

information not derived directly from image data falls within the category of contextual information: 

mission objectives, weather conditions, intelligence reports, battlefield conditions, etc., more or less 

anything that defines the image environment. Context provides invaluable insight into the 

composition and meaning of a scene. Coupled with the raw information extracted from the scene 

itself, contextual clues can greatly augment the effectiveness and efficiency of an ATR system. Most 

ATR algorithms incorporate a number of contextual clues as implicit assumptions that determine 

certain algorithmic parameters, algorithmic sub-blocks constituency, even algorithmic composition 

and internals. However, in the scope of a general ATR scheme, it seems too limiting to confine 

inspection to a narrow set of assumed predefined conditions, where the most minute change in scene 

context could render the system ineffectual. The approach explored in this paper attempts to devise a 

context ontology and a decision/control architecture that incorporates the explicit contextual 

information into every step of the ATR process. 

Contextual information is divided into three categories: physical, photogrammetric, and 

computational. Physical context defines the spatial environment: mountainous, forested, even 

specific details like a boulder sits at (x,y). Sensor attributes and image acquisition conditions 

comprise the photogrammetric context: field of view, orientation, time and date, etc. Computational 

context includes resources available, extent of processing, etc. The determination of just what 

contextual information defines the operative context for a given IU sub-block depends heavily on the 

application domain. When selected these contextual parameters find their representative incarnations 

as assertions, both established and hypothetical. 
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At the heart of the system lies a control model that determines the applicability of IU 

components given the context, selects the best algorithm for the situation, and constrains its 

parameters. The general structure of the system builds off the sequential ATR paradigm. From a 

collection of IU algorithms that perform the current analytic step, the sub-block that best fits the 

task, world data, and world knowledge/model context is chosen. The resultant scene description 

resulting from the IU processing is examined with the world knowledge and if consistent, enriches 

the world knowledge. In this way context determines the ATR pathway with a global scope. 

One implementation of this general architecture utilizes context sets, or more generally context 

tables to define the required/preferred context parameters for each IU algorithm. Context set 

groupings are used to control three IU steps: candidate generation, candidate comparison, clique 

formation. The pool of candidates obtained from the first step are sorted into a partial order at the 

second step. Then a clique is constructed from the "best" candidate from each partial order, testing 

consistency with the world model/knowledge, rejecting the inconsistent candidates. Finally the 

"best" clique is selected as the representative model for the scene. At every stage the context sets are 

used as satisfaction criteria to determine which algorithm is suitable for the current step. Moreover, 

the information generated at each step becomes a part of the global context, which can then further 

refine the model hypothesis. All the knowledge accrued as context and hypotheses are stored in a 

persistent OO-database that serves as the world knowledge/model. 

Observations: 

Perhaps one thing to note about this system is that when tested against imagery taken from a 

limited 2-mile square region, recognition was quite good. However when applied to images taken 

from different nature locales, performance dropped off by large margin. This was largely due to the 

limited relevance of the context knowledge to the new settings. Here enters the problem of defining 

context scope. Using a context scope localized to the present application domain restricts the 

generality of the system. Enlarging the scope may drastically increase the computational cost by 

giving each IU sub-block a very large context set. A more fundamental question is the very process of 

divulging contextual information and determining it's relationship to the IU algorithms. The very 

extensibility that the system is intended to allow may be its limitation. Other observations include 

the utility of adding in a learning mechanism for creating new context hypothesis and synthesizing 

new context inferences, incorporating the context information directly in the IU algorithm, not just 

in the control structure since creating algorithms for a every possible limited context seems 

atomization gone overboard. 
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ATR 3: "Vertex Space Analysis For Model-Based Target Recognition" 

Authors: Azriel Rosenfeld and Gary Whitten 

Group: Center for Automation Research, University of Maryland 

Field use: not specified, but tested on land-based tower-ground images 

Sensor type: visible and infra-red instrumentation 

Description: 

At the heart of this algorithm is a feature representation called Vertex Space. Model-Based ATR 

systems can generate multifarious and detailed hypothesis from abstract representations and perform 

robust verification analysis based on feature matching between the image and model feature space. 

One problem that often plagues Model-Based recognition is the robust extraction of features from 

the raw image. Often times the extraction process is either computationally intensive or susceptible 

to erroneous detection. The Vertex Space feature representation strives to solve this by reducing the 

3-D model to a set of vertices (curvature maxima) that remain invariant to 4 out of the 6 degrees of 

freedom in a 3-D viewing geometry. This alleviates both the computational strain of generating and 

matching complex 3-D models, and the resource strain of having to internally store the cumbersome 

models. 

Vertices, in the Vertex Space model, are very similar in nature to geometric vertices. A Vertex 

occurs at the intersection of two straight lines or at the point of maximal curvature of a continuos 

boundary. Size (degree measure of the angle between the rays), orientation (relative angular 

location), and location uniquely define each Vertex. While location may be highly variable from 

image to image, size and orientation are invariant with respect to translation. Although rotation in 

the image plane shifts the orientation value, it is only by a constant factor since the measure is 

relative to an arbitrary axis. Thus, only azimuth and elevation angles will change the Vertex Space 

representation of a given 3-D model. This reduction in model variables allows for a compact 

representation that expedites correlation matching by shrinking the search space (decreasing 

complexity), cooling the computational intensity of correlation calculation, and enhancing the 

resistance to clutter and occlusion (vertex independence allows for strict template matching to ignore 

clutter features). 

Precomputing the Vertex Space representation of targets from their 3-D + sensor features view 

to 2-D projection, augments matching efficiency by directing the candidate search process via hash 

table indexing. From a uniformly distributed set of viewpoints residing on an observation sphere 
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surrounding the 3-D target model, a set of 2-D Vertex Space views are generated and indexed into a 

hash table by their constituent Vertices (O.S). Candidate hypothesis generation then proceeds as 

follows: 1) every extracted Vertex from the image is indexed into the table, and the resultant views 

are incorporated into a view histogram. The peaks in the histogram indicate likely view candidates. 

2) indexing into a second hash table using image and model Vertex pairs generates an orientation 

offset histogram, where the peaks are again labeled as likely offset values. 3) using positional 

alignment data that is stored with each model Vertex: angles formed with other Vertices, a 

consistency check is made using a consistency matrix to find mutually consistent vertices. After a 

candidate hypothesis passes all this checkpoint, the corresponding 3-D model object is instantiated 

and matched with the image directly, for a final, thorough hypothesis verification. The Vertex Space 

hypothesis guides the final geometric target orientation by using the spherical coordinates as a least- 

square approximation to the real geometry. Thus the indexing process using Vertex Space directs the 

search into 3-D model space, increasing specificity and decreasing the information load at each level, 

thereby streamlining the process of hypothesis generation, selection, and verification. 

Crucial to the success of the Vertex Space Model-based recognition engine is the robust 

extraction of Vertex features from the image. The extraction process relies on a local curvature 

maxima calculation to pinpoint potential Vertices. First the raw curvature produces an orientation 

field that depicts the contour flow of the image. A non-linear low pass filter then removes isolated 

points of high curvature that arise from noise. Next, conditional gradient processing of curvature and 

orientation identifies boundaries for region splitting. Gradient thresholding partitions the curvature 

regions by the identified boundaries. Curvature regions without adequate spatial support are rejected 

through a size filter. Finally, a vertex location is chosen for each remaining curvature region by 

determining the most deeply embedded pixel. 

Observations: 

The system described by this algorithm only specifies a feature extractor and classifier, leaving the 

preprocessing and segmenter to be determined. The intent was to investigate a possible means of 

achieving the elusive goal of real-time battlefield ATR, where adverse conditions, high clutter, and 

sparse data availability prevail. It seems that system is successful in augmenting resistance to artifacts 

generated by occlusion and clutter, due to Vertex independence. 
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ATR 4: "Model-Based Automatic Target Recognition System for the UGV/RSTA 

Ladar" 

Authors: Jacques G. Verly, Dan E. Dudgeon, and Richard T. Lacoss 

Group: Machine Intelligence Technology Group, MIT Lincoln Laboratory 

Field use: for real-time use on a Semiautonomous Surrogate Vehicle direct 

navigation 

Sensor type: LADAR, forward looking 

Description: 

This system relies on Functional Template Correlation as the heart of its recognition process. 

Functional Templates are image correlation functions defined for a target template. For each pixel 

value in the template, a function fn(x), that maps an Image pixel to a value in a given range [0,255]. 

These values are then averaged across the template and clipped. The template is applied to every 

pixel in the image and can also be rotated to search for rotated patterns. Due to the nature of the 

Functional Templates used, the segmented regions must be reprojected to a top down view. One 

caveat in this approach is the loss of target information as the view is reprojected, as there is self- 

obscuration i.e. a frontal view of a tank that becomes a mere set of lines delineating the forward 

perimeter only. These situations are dealt with by ... 

Target detection examines the image for Interest Images, regions that are likely to contain 

targets. These interest images, drawn from various image modalities using heuristic directives, are 

then combined via some fusion scheme to obtain a complete collection of Interest regions, which 

traverse the gamut of image modalities including images that weren't even used to generate the 

Interest Images. The primary heuristic detection schemes used is height limited-verticality: that 

finding objects jutting out vertically from some reference plane, limited by an upper height bound to 

confine interest to the range of military vehicle sizes. Another use of the Interest Images comes from 

determining a range based segmentation where pixels of similar range and high interest divide the 

image into range-segment. Together the two combine to form an RS-window which bounds regions 

of interest in a given range segment. Extraction of the target silhouette from RS-window is 

accomplished by cutting out the portion of the image in the RS-window corresponding to the range- 

segment associated with the window. 

Recognition is preceded by vertical reprojection to transform the imagery into a form tailored for 

FTC. The overhead view resulting from this procedure is accompanied by a trace image, which is a 
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mask of the reprojected pixels, a count image, which counts the number of pixels reprojected to a 

given pixel, and a z-coordinate image, depicting height relative to some chosen ground plane. With 

the reprojected images, recognition proceeds by first applying a Hough transform to the count image 

to determine target orientation. This shrinks the angular range that FT's have to be spun at each 

pixel point since the general orientation of the target is known. Then the FTC kicks in. For each 

type of overhead view to be analyzed, a different set of FT's are needed: count FT's, z-coordinate 

FT's , etc. Within each set every FT corresponds to a azimuth angle range. The FTC engine then 

searches through the image to find the highest correlating FT, and thereby labeling the target. 

Observations: 

One interesting thing to note about this particular system is that due to the unavailability of the 

actual working sensor for the UGV, many sensor specific portions of the algorithm were skipped 

over, like sensor generated noise, imaging characteristics, etc. The inherent dependence upon 

reprojection to obtain some sort of invariant imaging for FTC seems somewhat debilitating, 

especially when the available views are normal to the face of the target which translates to a severely 

deprecated reprojected image. 
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Figure A-4: Model Based ATR Using LADAR 
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ATR 5: "Recognition of 3-D objects from multiple 2-D views by a self-organizing 

neural architecture" 

Authors: Gary Bradski and Stephen Grossberg 

Group: Boston University Center for Adaptive Systems and Department of 

Cognitive and Neural Systems 

Field use: intended as a general system for ATR, unspecified as to particular 
application. Testing performed using 2-D jet aircraft imagery 

Sensor type: unspecified 

Description: 

From input to output, the core of this system is based on a neural network architecture called 

VIEWNET. Everything from object detection all the way through object classification is processed 

using some neural network system. Initial processing occurs using a CORT-X 2 filter. Filtering 

removes image noise and traces target boundaries, resulting in a refined, isolated target image. A log- 

polar transform is then applied to the segmented image with respect to the object centroid, and re- 

centered to generate a 2-D scale and rotation invariant representation. The invariant images are then 

coarse coded using Gaussian filters to eliminate remaining noise, reduce foreshortening effects, and 

increase generalization. At the final step, these compressed images are sent through a fuzzy ARTMAP 

learning engine. 

The CORT-X 2 filter is divided into 2 steps: illuminant noise filtering, and boundary 

segmentation. An on-center and off-center filtering network combine to enhance image contrast and 

eliminate variable illumination. The two filters have polar affinities for concave and convex corners 

in the image, which facilitates the following boundary segmentation process. Large scale and small 

scale transforms of the convolved images are applied to confer additional noise reduction and 

positional localization sensitivity. The two sets of images, large and small, are then passed through a 

series of hypercomplex cells for edge detection in parallel. At the end of the pipeline the two resultant 

boundary definitions are combined to produce the extracted target boundary. 

Dividing the 2-D boundary image by its 1st and Oth moments then subtracting off the center 

ascertains the figure centroid, which is then used to shift the image to its center. Applying the log- 

polar transform to the image with respect to the center yields coordinates of log radial magnitude 

and angle: re'9. Figure scale and rotation become constant shifts in this representation. Using these 

shifts to  center the transformed image imbues the representation positional, angular,  and 
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dimensional invariance. 

The next step of coarse coding serves to compress the image data, compensate for alignment 

inaccuracies, reduce foreshortening and self-occlusion effects, and expunge noise. However there is 

the potential of over simplifying the image to the point of losing image features crucial to the 

recognition analysis. Treading upon this fine line is directed by a spatial averaging method that 

convolves the image with a Gaussian function q>, then sampling the resultant image with delta 

functions every T pixels. Compression can shrink the image down to as small as 4x4 pixels. 

The fuzzy ARTMAP applied to the coarse-coded image to classify the target utilizes an ART 

module to categorize the input vector, which is then mapped by an associative memory to output 

nodes predicting the target type. During supervised learning, the network receives an input 

containing both the image vector and the truth classification data. If the image is incorrectly 

classified, a memory search is invoked by a mechanism called match tracking, where either a pre- 

existing category mapping to the correct target type is found or a new category is created and further 

learning occurs to form the connection. At the output end, the maximally activated node indicates 

the predicted target type. 

Observations: 

One key assumption/simplification made by this system is that the target is separated from its 

background. This is most definitely cheating, because the high contrast then allows for near-perfect 

object detection and segmentation, irrespective of the method used, as long as its viable. False alarms 

and missed detections are completely removed from the picture, and an inaccurate view of system 

performance is imposed. Target detection is a crucial part to most ATR's; making this assumption 

basically removes one of the inherent difficulties of the field from consideration, since many real 

battlefield images will not have such high contrast, especially when targets are camouflaged or 

atmospheric conditions occlude the target signature. 
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Figure A-5A: Overall Architecture 
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Figure A-5B: CORT-X 2 Filter 
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ATR 6: "Multiresolution approaches for automatic target detection" 

Authors: Bjorn Jawerth and Leonard Mygatt 

Group: Summus Ltd. 

Field use: not specified 

Sensor type: not specified 

Description: 

As of the report, the system had only a target detection/segmentation scheme and feature 

enhancement algorithms. Using a wavelet-based oscillation measure computed as a weighted sum of 

the wavelet coefficients and DC component coefficients over a varying neighborhood, image texture 

properties can be characterized and defined. From this measure, the "fractal signature" of the 

underlying texture is used to identify the clutter as an n-dimensional surface. This surface can then 

be used as a decision threshold or feature for subsequent detection and classification algorithms. The 

segmentation algorithm that follows partitions the input image according to homogenous regions 

based on pixel intensity. 

Two approaches are used in feature enhancement and extraction: wavelet domain transforms and 

applications of linear/non-linear PDE's. In the first method, conventional high-pass filters applied to 

small pixel neighborhoods in the wavelet domain augment and identify textures. The second method 

uses a PDE defined as ut = -IVulF(L(u)) where L is an edge detection or curvature based operator, 

and F is a step function. Solving this equation produces an image with sharper edges and less noise. 

Essentially the original image is treated as a blurred facsimile. Reversing the diffusion process restores 

the detail inherent to the scene. Enhancement quality depends on the choice of the L operator. 

Observations: 

Since this was only a progress report, not too much can be said about the system as a whole. The 

testing was limited, but indicated very good performance in terms of noise reduction and 

enhancement. 

65 



R96451 
Charles River Analytics 

Target Classifier 

Feature Extractor 

-> 

Multi-layer 
FeedForward 

Neural Network 

Gabor 
Feature 
Extractor 

Segmentation 
Refiner > 

Transform 
Network -> 

Figure A-6: Multiresolution ATR 
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ATR 7: 'Target Recognition Using Multiple Sensors" 

Authors: Y.T. Zhou and R. Hect-Nielsen 

Group: HNC, Inc. 

Field use: not specified 

Sensor type: applicable to various sensor modalities 

Description: 

This system includes a feature extractor and classifier, comprising a target recognition sub-system 

that can be incorporated in an end-to-end ATR system. The feature extractor focuses on geometric- 

variant features, based on the noise resistance qualities of such attributes. To reduce the 

computational cost of the classification process that raw geometric properties often incur, a spatial 

domain transform is applied to the feature space data. Classification is accomplished via a multi-layer 

neural network architecture capable of synthesizing input data from multiple sensors into a candidate 

identification hypothesis. 

There are three major components to the feature extractor: segmentation refiner, transform 

network, and Gabor feature extractor. The segmented input often comes somewhat mottled, with 

inexact target boundaries, holes, etc. Refining smoothes the boundaries and makes them more 

regular, framing the target with a much tighter fitting border. Holes are refined by the use of 

morphological operators that preserves the continuos nature of target image signatures. The 

transformation relies on a what-and-where inspired neural network that takes an object image, 

rotates it along the optical axis, scales and translates it to a centered canonical position. "What 

remains is an image varying only with azimuth and elevation. Estimates of the target position taken 

from the segmented image using pyramid filters are used to reposition the original image. This 

transform operation is highly resistant to noise. Gabor features are computed using Gabor functions, 

Gaussian weighted sinusoidal functions. Due to the parametrized nature of the functions, which 

allow for orientation along different directional axes, center points, and spatial ranges, multiple 

features can be computed from varying perspectives. The sine and cosine components correspond to 

the presence of bars and edges. Computation at several points in and surrounding the center gives a 

rich set of features useful for classification. 

Classification is accomplished by a multi-layer feedforward neural network. The network is 

typical of most neural architectures. Input and output layer sizes are predetermined by feature set 

and target class set cardinalities. Hidden layer depth and size though must be determined 
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experimentally, along with the weights and other parameters. Training adjusts these values according 

to a back-propagation learning algorithm. 

Observations: 

For the most part, this a fairly straight forward neural network approach to ATR. 
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Figure A-7: ATR with Multiple Sensors 
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ATR 8: "A Multifeature Decision Space Approach to Radar Target Identification" 

Authors: J. G. Teti Jr., R. P. Gorman, and W. A. Berger 

Group: JJM Systems, Inc. and Dept. of Physics and Electronics Engineering 

Field use: airborne target identification 

Sensor type: sensor suite spanning a spectral range suitable for characterizing 
the target; single monostatic radar sensor opening at X-Band 

Description: 

This ATR system uses a classical formulation to the target identification problem. From the 

sensory input acquired from the sensor suite, a set of target features are extracted according to target 

phenomenology. This multidimensional vector of features is then mapped into a decision space 

constructed from a probabilistic analysis of the feature space and it's correspondence to target 

identities, giving a final target hypothesis. 

The target features used in this particular implementation are radar cross section, length, two 

spectral features extracted from jet engine modulation, target velocity, and altitude. Together, these 

features form a 6-dimensional target description vector, which should uniquely identify the target in 

the mapping. However, this is very much dependent on the specificity of the features themselves in 

characterizing the targets, contingent upon the very nature of the targets themselves. 

Construction of the decision space relies on the ability of the features to partition the state space 

into N disjoint, distinct regions with sharp boundaries. The regions defined by this partitioning are 

distributed throughout the state space according to the joint intersection of individual target 

outcomes from each discriminant feature. This is achieved using a statistical description of the joint 

probability density function for each target, assuming feature independence. With the target regions 

delineated in the decision space, application of a Bayesian Decision Rule yields a hypothesis 

corresponding to the target with the maximal conditional probability. 

Observations: 

Due to the fact that this system deals with airborne target identification, some of the 

assumptions made are inapplicable to the ground-based ATR domain. Within the scope of the paper 

discussion there was no mention of target detection and segmentation, which is a product of the 

simplified segmentation process in aerial scenarios. Another note is the potential weighting of 

features in the decision space, to emphasize the more salient and discriminatory attributes. This 

69 



R96451 
Charles River Analytics 

would require a separate Bayesian Decision Rule for each decision subspace. Terminal combination 

of the individual hypothesis according to a weighted scheme would be necessary for ascertaining the 

final target hypothesis. Lastly, correct modeling and selection of features is crucial to the accuracy of 

the detection system. 
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Figure A-8: Multifeature Decision Space Approach to Radar ATR 
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ATR 9: "Multi-Target Discrimination with Linear Signal Decomposition/Direction of 

Arrival Based ATR" 

Authors: Barry K. Hill David Cyganskl and Richard F. Vaz 

Group: Machine Vision Laboratory, Electrical and Computer Engineering 

Department, Worcester Polytechnic Institute 

Field use: ground based detection amidst high clutter 

Sensor type: SAR 

Description: 

Model based ATR systems exploit geometric or spatial features to generate target hypotheses. 

However most approaches are either too costly or too difficult to characterize correctly. One slant on 

the problem is to amass an enormous target image database that spans the entire range of possible 

target views and orientations. Scanning the database using a correlation match operator on the input 

image and the database image could require immense computational resources, as the search space 

blossoms exponentially with the inclusion of additional targets and variables. Another popular 

approach is to extract pose invariant features, or constrain geometric variance to a smaller, more 

tractable number of variables, which greatly diminishes storage and computational overhead. An 

inherent problem, though, is the relevance of the chosen features as target discriminants, since there 

is a degree of information loss in the transformation process. In this particular system, a novel 

approach to the model-based paradigm is examined that does not rely upon this search/match 

approach. Rather, it uses a Linear Signal Decomposition/Direction of Arrival algorithm for 

engendering both target hypotheses and pose estimates. This method exploits the variance induced 

by pose to produce these estimates, calculating the target signature as a function of the pose. 

Much of the efficiency and power found in the LSD/DOA method lies in its precomputation of 

Reciprocal Basis Sets. Reducing the target data into a small collection of RBS's allows for an entire 

target, including orientation variability, to be characterized by a functional model. This functional 

model is an inner product of the discrete fourier transform of the target view sequence, which 

incorporates orientation information into the model itself. When combined with the target image, 

the RBS generates a statistical metric sufficient for matching criterion and a pose estimate, called 

Synthetic Waveform Samples. These SWS's are so-called due to their interpretation as plane waves 

that characterize object pose when analyzed with a Direction of Arrival algorithm to determine the 

directional cosine and it's period. Once these RBS are computed from the basis set of target images 

along with image and sensor noise estimates, using a matrix Singular Value Decomposition method, 
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they can be used as image operators, on the input data to determine the pose/identity hypothesis. 

To perform the final target recognition step, a Generalized Likelihood Ration Test is used to 

provide the basis for a decision rule. This Bayesian formulation computes a ratio between the various 

conditional hypotheses of target identity and the resultant SWS vector. The SWS --> target match 

with the greatest correlation score wins. 

Observations: 

Given the results of the study, it appears as though this approach has a very high accuracy in 

prediction rating, generating a highly level of true + predictions. However it can be noted that the 

imagery used was not of real battlefield scenes, but rather of SAR images of target vehicles overlaid 

on man-made cluttered backgrounds. Moreover the entire target detection and segmentation 

problem was overlooked, because of the focus on the target identification problem. Another point to 

be made is the small set of targets used, and the singular use of targets in the test imagery, with only 

one target in each image, I believe. Thus these results may not be completely representative of the 

system performance. 
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Figure A-9: Multi-target ATR Using Linear Signal Decomposition 
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